Skip to main content
Log in

Synthesis of Metal Organic Framework (MOF) based Ca-Alginate for adsorption of malachite green dye

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Wastewater contaminated by dye produced by the rapid industrialization is a global problem. One type of the dyes used in the industry is malachite green (MG). In this study, we reported the results of designing and synthesizing the Ca-Alginate (Metal Organic Framework (MOF)) as well as its application as an adsorbent to reduce the amount of MG in wastewater. The alginate used for the synthesis of Ca-Alginate was first obtained by extracting it from brown algae using sodium carbonate as a solvent. In this study, Ca-Alginate was obtained by ion exchange process using calcium chloride solution and calcination at a temperature of 900 °C. Based on the characterization data, it was found that the adsorbent has a macropore structure with a specific surface area of 0.614 m2/g and a total pore volume of 1.744 × 10−3 cc/g. The result of the FTIR characterization showed the presence of hydroxyl groups, symmetrical and asymmetrical carboxyl groups, and mannuronic and guluronic groups. These groups indicated the presence of alginate. The adsorption ability test on the MG dye was performed at various changes in contact time and concentration of the adsorbent, while the MG concentration on the adsorption process was examined using the batch system. The results showed that the highest reduction in MG occurred at the contact time of 120 min, 0.06 g/L of adsorbent dosage and 0.0055 g/L of initial MG concentration. Under these conditions the Ca-Alginate could adsorb up to 84.47% of MG. The adsorption kinetic of MG onto Ca-Alginate obeyed the modified pseudo-first-order (MPFO) model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbasi M, Sabzehmeidani MM, Ghaedi M, Jannesar R, Shokrollahi A (2021) Synthesis of grass-like structured Mn–Fe layered double hydroxides/PES composite adsorptive membrane for removal of malachite green. Appl Clay Sci 203:105946. https://doi.org/10.1016/j.clay.2020.105946

    Article  CAS  Google Scholar 

  2. Abdelrahman EA (2018) Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media. J Mol Liquids 253:72–82. https://doi.org/10.1016/j.molliq.2018.01.038

    Article  CAS  Google Scholar 

  3. Akram M, Bhatti HN, Iqbal M, Noreen S, Sadaf S (2017) Biocomposite efficiency for Cr(VI) adsorption: kinetic, equilibrium and thermodynamics studies. J Environ Chem Eng 5(1):400–411. https://doi.org/10.1016/j.jece.2016.12.002

    Article  CAS  Google Scholar 

  4. Amiri M, Salavati-Niasari M, Akbari A, Gholami T (2017) Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: herbal and green sol-gel autocombustion synthesis. Int J Hydrogen Energy 42(39):24846–24860. https://doi.org/10.1016/j.ijhydene.2017.08.077

    Article  CAS  Google Scholar 

  5. Azizian S, Fallah RN (2010) A new empirical rate equation for adsorption kinetics at solid/solution interface. Appl Surf Sci 256(17):5153–5156. https://doi.org/10.1016/j.apsusc.2009.12.080

    Article  CAS  Google Scholar 

  6. Bua P (2020) Makalah Kimia Dasar 2 (Kimia Unsur). Universitas Negeri Gorontalo, Gorontalo

    Google Scholar 

  7. Budiana IGMN, Jasman J, Neolaka YAB, Riwu AAP, Elmsellem H, Darmokoesoemo H, Kusuma HS (2021) Synthesis, characterization and application of cinnamoyl C-phenylcalix[4]resorcinarene (CCPCR) for removal of Cr(III) ion from the aquatic environment. J Mol Liquids 324:114776. https://doi.org/10.1016/j.molliq.2020.114776

    Article  CAS  Google Scholar 

  8. Cardenas-Jiron G, Leal D, Matsuhiro B, Osorio-Roman IO (2011) Vibrational spectroscopy and density functional theory calculations of poly-D-mannuronate and heteropolymeric fractions from sodium alginate. J Raman Spectrosc 42(4):870–878. https://doi.org/10.1002/jrs.2760

    Article  CAS  Google Scholar 

  9. Chandia NP, Matsuhiro B, Vasquez AE (2001) Alginic acids in Lessonia trabeculata: characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohyd Polym 46(1):81–87. https://doi.org/10.1016/S0144-8617(00)00286-1

    Article  CAS  Google Scholar 

  10. Cui H, Li Q, Qian Y, Tang R, An H, Zhai J (2011) Defluoridation of water via electrically controlled anion exchange by polyaniline modified electrode reactor. Water Res 45(17):5736–5744. https://doi.org/10.1016/j.watres.2011.08.049

    Article  CAS  PubMed  Google Scholar 

  11. Daradmare S, Xia M, Le VN, Kim J, Park BJ (2021) Metal–organic frameworks/alginate composite beads as effective adsorbents for the removal of hexavalent chromium from aqueous solution. Chemosphere 270:129487. https://doi.org/10.1016/j.chemosphere.2020.129487

    Article  CAS  PubMed  Google Scholar 

  12. Dwijayanti U, Gunawan G, Widodo DS, Haris A, Suyati L, Lusiana RA (2020) Adsorpsi methylene blue (MB) menggunakan abu layang batubara teraktivasi larutan NaOH. Anal Environ Chem 5(1):1–14. https://doi.org/10.23960/aec.v5.i1.2020.p01-14

    Article  Google Scholar 

  13. Fitriansyah A, Amir H, Elvinawati E (2021) Karakterisasi adsorben karbon aktif dari sabut pinang (Areca catechu) terhadap kapasitas adsorpsi zat warna indigosol blue 04-B. Alotrop 5(1):42–54

    Article  Google Scholar 

  14. Habila MA, Al Othman ZA, El-Toni AM, Labis JP, Li X, Zhang F, Soylak M (2016) Mercaptobenzothiazole-functionalized magnetic carbon nanospheres of type Fe3O4@SiO2@C for the preconcentration of nickel, copper and lead prior to their determination by ICP-MS. Microchim Acta 183(8):2377–2384. https://doi.org/10.1007/s00604-016-1880-x

    Article  CAS  Google Scholar 

  15. Irawati H, Aprilita NH, Sugiharto E (2018) Adsorpsi zat warna kristal violet menggunakan limbah kulit singkong (Manihot esculenta). Bimipa 25(1):17–31

    Google Scholar 

  16. Jiang F, Dinh DM, Hsieh Y. Lo. (2017) Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels. Carbohyd Polym 173:286–294. https://doi.org/10.1016/j.carbpol.2017.05.097

    Article  CAS  Google Scholar 

  17. Khoshnamvand N, Jafari A, Kamarehie B, Mohammadi A, Faraji M (2019) Removal of malachite green dye from aqueous solutions using zeolitic imidazole framework-8. Environ Process 6(3):757–772. https://doi.org/10.1007/s40710-019-00384-9

    Article  CAS  Google Scholar 

  18. Kurniawan A, Nizar M, Rijal M, Bagas R, Setyarsih W (2014) Studi pengaruh variasi suhu kalsinasi terhadap kekerasan bentuk morfologi, dan analisis porositas nanokomposit Cao/Sio2 untuk aplikasi bahan biomaterial. J Penelit Fis Dan Apl (JPFA) 4(2):22

    Article  Google Scholar 

  19. Landin-Sandoval VJ, Mendoza-Castillo DI, Seliem MK, Mobarak M, Villanueva-Mejia F, Bonilla-Petriciolet A, Navarro-Santos P, Reynel-Ávila HE (2021) Physicochemical analysis of multilayer adsorption mechanism of anionic dyes on lignocellulosic biomasses via statistical physics and density functional theory. J Mol Liquids. https://doi.org/10.1016/j.molliq.2020.114511

    Article  Google Scholar 

  20. Larosa C, Salerno M, de Lima JS, Merijs Meri R, da Silva MF, de Carvalho LB, Converti A (2018) Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses. Int J Biol Macromol 115:900–906. https://doi.org/10.1016/j.ijbiomac.2018.04.138

    Article  CAS  PubMed  Google Scholar 

  21. Leng L, Yuan X, Zeng G, Shao J, Chen X, Wu Z, Wang H, Peng X (2015) Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption. Fuel 155:77–85. https://doi.org/10.1016/j.fuel.2015.04.019

    Article  CAS  Google Scholar 

  22. Li N, Yue Q, Gao B, Xu X, Kan Y, Zhao P (2018) Magnetic graphene oxide functionalized by poly dimethyl diallyl ammonium chloride for efficient removal of Cr(VI). J Taiwan Inst Chem Eng 91:499–506. https://doi.org/10.1016/j.jtice.2018.05.028

    Article  CAS  Google Scholar 

  23. Liang SX, Jia Z, Zhang WC, Wang WM, Zhang LC (2017) Rapid malachite green degradation using Fe73.5Si13.5B9Cu1Nb3 metallic glass for activation of persulfate under UV–Vis light. Mater Des 119:244–253

    Article  CAS  Google Scholar 

  24. Mahreni M, Yuli R (2020) A review on Metal-Organic Framework (MOF): synthesis and solid catalyst applications. Proc Eng Sci Ser (ESS) 1(1):638–645

    Google Scholar 

  25. Manuja A, Kumar S, Dilbaghi N, Hanjana G, Chopra M, Kaur H, Kumar R, Manuja BK, Singh SK, Yadav SC (2014) Quinapyramine sulfate-loaded sodium alginat nanoparticles show enhanced trypanocidal activity. Nanomedicine 9:1625–1634

    Article  CAS  PubMed  Google Scholar 

  26. Marsen, Alimano dan Syafila Mindriany. (2014). Adsorbent size reduction to enlarge its pore diameter in effort to improve used cooking oil adsorption efficiency. Jurnal Teknik Lingkungan. Volume 20 Nomor 2, Oktober, pp. 173–182.

  27. Neolaka YAB, Supriyanto G, Kusuma HS (2019) Synthesis and characterization of natural zeolite with ordered ion imprinted polymer structures (IIP@AFINZ) for selective Cr(VI) adsorption from aqueous solution. Moroccan J Chem 7(1):194–210

    CAS  Google Scholar 

  28. Neolaka YAB, Supriyanto G, Darmokoesoemo H, Kusuma HS (2018) Characterization, kinetic, and isotherm data for Cr(VI) removal from aqueous solution by Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure. Data Brief 17:969–979. https://doi.org/10.1016/j.dib.2018.01.076

    Article  PubMed  PubMed Central  Google Scholar 

  29. Noreen S, Khalid U, Ibrahim SM, Javed T, Ghani A, Naz S, Iqbal M (2020) ZnO, MgO and FeO adsorption efficiencies for direct sky blue dye: equilibrium, kinetics and thermodynamics studies. J Mater Res Technol 9(3):5881–5893. https://doi.org/10.1016/j.jmrt.2020.03.115

    Article  CAS  Google Scholar 

  30. Pan X, Zuo G, Su T, Cheng S, Gu Y, Qi X, Dong W (2019) Polycarboxylic magnetic polydopamine sub-microspheres for effective adsorption of malachite green. Colloids Surf A Physicochem Eng Aspects 560:106–113. https://doi.org/10.1016/j.colsurfa.2018.10.014

    Article  CAS  Google Scholar 

  31. Patidar D, Goyal S (2021) Adsorptive removal of malachite green dye from aqueos solution using a non carbon adsorbent: equilibrium, kinetics and thermodynamics. J Adv Sci Res 1(2):19–23

    Google Scholar 

  32. Raval NP, Shah PU, Shah NK (2016) Nanoparticles loaded biopolymer as effective adsorbent for adsorptive removal of malachite green from aqueous solution. Water Conserv Sci Eng 1(1):69–81. https://doi.org/10.1007/s41101-016-0004-0

    Article  Google Scholar 

  33. Rehman Shah HU, Ahmad K, Naseem HA, Parveen S, Ashfaq M, Rauf A, Aziz T (2021) Water stable graphene oxide metal-organic frameworks composite (ZIF-67@GO) for efficient removal of malachite green from water. Food Chem Toxicol 154(March):112312. https://doi.org/10.1016/j.fct.2021.112312

    Article  CAS  PubMed  Google Scholar 

  34. Sayğılı H, Güzel F (2018) Usability of activated carbon with well-developed mesoporous structure for the decontamination of malachite green from aquatic environments: kinetic, equilibrium and regeneration studies. J Porous Mater 25(2):477–488. https://doi.org/10.1007/s10934-017-0459-1

    Article  CAS  Google Scholar 

  35. Shi Z, Xu C, Guan H, Li L, Fan L, Wang Y, Liu L, Meng Q, Zhang R (2018) Magnetic Metal Organic Frameworks (MOFs) composite for removal of lead and malachite green in wastewater. Colloids urf A: Physicochem Eng Aspects 539:382–390. https://doi.org/10.1016/j.colsurfa.2017.12.043

    Article  CAS  Google Scholar 

  36. Tang J, Zhang YF, Liu Y, Li Y, Hu H (2020) Efficient ion-enhanced adsorption of congo red on polyacrolein from aqueous solution: experiments, characterization and mechanism studies. Sep Purif Technol 252(April):117445. https://doi.org/10.1016/j.seppur.2020.117445

    Article  CAS  Google Scholar 

  37. Wu Y, Yang F, Liu X, Tan G, Xiao D (2018) Fabrication of N, P-codoped reduced graphene oxide and its application for organic dye removal. Appl Surf Sci 435:281–289. https://doi.org/10.1016/j.apsusc.2017.10.118

    Article  CAS  Google Scholar 

  38. Zadvarzi SB, Khavarpour M, Vahdat SM, Baghbanian SM, Rad AS (2021) Synthesis of Fe3O4@chitosan@ZIF-8 towards removal of malachite green from aqueous solution: theoretical and experimental studies. Int J Biol Macromol 168:428–441. https://doi.org/10.1016/j.ijbiomac.2020.12.067

    Article  CAS  PubMed  Google Scholar 

  39. Zhang T, Jin X, Owens G, Chen Z (2021) Remediation of malachite green in wastewater by ZIF-8@Fe/Ni nanoparticles based on adsorption and reduction. J Colloid Interface Sci 594:398–408. https://doi.org/10.1016/j.jcis.2021.03.065

    Article  CAS  PubMed  Google Scholar 

  40. Zhao X, Zheng M, Gao X, Zhang J, Wang E, Gao Z (2021) The application of MOFs-based materials for antibacterials adsorption. Coord Chem Rev 440:213970. https://doi.org/10.1016/j.ccr.2021.213970

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahreni Mahreni or Heri Septya Kusuma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahreni, M., Ramadhan, R.R., Pramadhana, M.F. et al. Synthesis of Metal Organic Framework (MOF) based Ca-Alginate for adsorption of malachite green dye. Polym. Bull. 79, 11301–11315 (2022). https://doi.org/10.1007/s00289-022-04086-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04086-5

Keywords

Navigation