Skip to main content
Log in

Enhancement of fire performance for rigid polyurethane foam composites by incorporation of aluminum hypophosphite and expanded graphite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of rigid polyurethane foam/aluminum hypophosphite/expanded graphite (RPUF/AHP/EG) composites were prepared by one-step water-blown method. The effects of AHP/EG on the cell structure, thermal stability, flame retardant as well as combustion behavior of the composites were investigated by Scanning electron microscope (SEM), Thermogravimetric analysis (TG), Limiting oxygen index (LOI), UL-94 vertical burning test and Micro-combustion calorimetry (MCC). Flame-retardant tests and thermogravimetric analysis confirmed that the AHP/EG system enhanced high-temperature stability and flame-retardant performance of the composites. The char residue of RPUF/AHP15/EG15 at 700 °C was 22.4 wt%, the LOI value was 26.4 vol% with V-1 rating in UL-94 test. Thermogravimetric analysis-Fourier transform infrared spectrometer (TG-FTIR) indicated that AHP/EG system significantly inhibited the generation of hydrocarbons, CO2, CO and esters from the pyrolysis RPUF matrix. XPS analysis showed that the combination of AHP and EG could promote RPUF matrix to form aromatic and aromatic heterocyclic structure, which was benefit to the formation of dense char layer, thus achieving the purpose of flame retardancy. Based on the analysis, the flame-retardant mechanism of RPUF/AHP/EG composites was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Visakh PM, Semkin AO, Rezaev IA, Fateev AV (2019) Review on soft polyurethane flame retardant. Constr Build Mater 227:116673–121166

    Article  CAS  Google Scholar 

  2. Tang G, Liu MR, Deng D, Zhao RQ, Liu XL, Yang YD, Yang SJ, Liu XY (2021) Phosphorus-containing soybean oil-derived polyols for flame-retardant and smoke-suppressant rigid polyurethane foams. Polym Degrad Stabil. 191:109701

    Article  CAS  Google Scholar 

  3. Cheng JJ, Ma D, Li SX, Qu WJ, Wang D (2020) Preparation of Zeolitic Imidazolate Frameworks and Their Application as Flame Retardant and Smoke Suppression Agent for Rigid Polyurethane Foam. Polymers 12:347–355

    Article  PubMed Central  Google Scholar 

  4. Tang G, Liu XL, Zhou L, Zhang P, Deng D, Jiang HH (2020) Steel slag waste combined with melamine pyrophosphate as a flame retardant for rigid polyurethane foams. Adv Powder Technol 31:279–287

    Article  CAS  Google Scholar 

  5. Li A, Yang DD, Li HN, Jiang CL, Liang JZ (2018) Flame-retardant and mechanical properties of rigid polyurethane foam/MRP/mg(OH)2/GF/HGB composites. J Appl Polym Sci 135:46551

    Article  Google Scholar 

  6. Chen YJ, Jia ZX, Luo YF, Jia DM, Li B (2014) Environmentally Friendly Flame-Retardant and Its Application in Rigid Polyurethane Foam. Int J Polym Sci 2014:1–7

    Google Scholar 

  7. Wang JY, Xu B, Wang XD, Liu YT (2021) A phosphorus-based bi-functional flame retardant for rigid polyurethane foam. Polym Degrad Stabil 186:109516

    Article  CAS  Google Scholar 

  8. Tang G, Zhao RQ, Deng D, Yang YD, Chen DP, Zhang B, Liu XL, Liu XY (2021) Self-extinguishing and transparent epoxy resin modified by a phosphine-containing bio-based derivative. Front Chem Sci Eng 15:1269–1280

    Article  CAS  Google Scholar 

  9. Yang R, Hu W, Xu L, Song Y, Li JC (2015) Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate. Polym Degrad Stabil 122:102–109

    Article  CAS  Google Scholar 

  10. Shi YQ, Liu C, Duan ZP, Yu B, Liu MH, Song PG (2020) Interface Engineering of MXene towards Super-tough and Strong Polymer Nanocomposites with High Ductility and Excellent Fire Safety. Chem Eng J 399:125829

    Article  CAS  Google Scholar 

  11. Jia D, Tong Y, Hu J (2018) The effects of N, N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol on the flame retardancy and physical-mechanical properties of rigid polyurethane foams. J Fire Sci 36:535–545

    Article  CAS  Google Scholar 

  12. Chen YJ, Luo YF, Guo XH, Chen LJ, Xu TW, Jia DM (2019) Structure and Flame-Retardant Actions of Rigid Polyurethane Foams with Expanded Graphite. Polymers 11:686

    Article  CAS  PubMed Central  Google Scholar 

  13. Chang C, Liu LW, Li P, Xu GZ, Xu CB (2020) Preparation of flame retardant polyurethane foam from crude glycerol based liquefaction of wheat straw. Ind Crop Prod 160:113098

    Article  Google Scholar 

  14. Zhu ZM, Rao WH, Kang AH, Liao W, Wang YZ (2018) Highly effective flame retarded polystyrene by synergistic effects between expandable graphite and aluminum hypophosphite. Polym Degrad Stabil 154:1–9

    Article  CAS  Google Scholar 

  15. Wang SH, Wang XG, Wang X, Li HF, Sun J, Sun WX, Yao Y (2019) Surface coated rigid polyurethane foam with durable flame retardancy and improved mechanical property. Chem Eng J 385:123755

    Article  Google Scholar 

  16. Xi W, Qian LJ, Chen YJ, Wang JY, Liu XX (2015) Addition flame-retardant behaviors of expandable graphite and [bis(2-hydroxyethyl)amino]-methyl-phosphonic acid dimethyl ester in rigid polyurethane foams. Polym Degrad Stabil 122:36–43

    Article  CAS  Google Scholar 

  17. Zhang ZY, Li DS, Xu MJ, Li B (2020) Synthesis of a novel phosphorus and nitrogen-containing flame retardant and its application in rigid polyurethane foam with expandable graphite. Polym Degrad Stabil 173:109077

    Article  Google Scholar 

  18. Cheng J, Qu S, Sun S (2019) Mechanical properties improvement and fire hazard reduction of expandable graphite microencapsulated in rigid polyurethane foams. Polym Compos 40:E1006–E1014

    Article  CAS  Google Scholar 

  19. Tang G, Liu XL, Yang YD, Chen DP, Zhang H, Zhou L, Zhang P, Jiang HH, Deng D (2020) Phosphorus-containing silane modified steel slag waste to reduce fire hazards of rigid polyurethane foams. Adv Powder Technol 31:1420–1430

    Article  CAS  Google Scholar 

  20. Ding HY, Huang K, Li SH, Xu LN, Xia JL, Li M (2017) Flame retardancy and thermal degradation of halogen-free flame-retardant biobased polyurethane composites based on ammonium polyphosphate and aluminum hypophosphite. Polym Test 62:325–334

    Article  CAS  Google Scholar 

  21. Wu NJ, Lang SG (2016) Flame retardancy and toughness modification of flame retardant polycarbonate/acrylonitrile-butadiene-styrene/AHP composites. Polym Degrad Stabil 123:26–35

    Article  CAS  Google Scholar 

  22. Ma C, Wang JL, Yuan Y, Mu XW, Pan Y, Song L, Hu Y (2019) An insight into gas phase flame retardant mechanisms of AHP versus AlPi in PBT: Online pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry. Combust Flame 209:467–477

    Article  CAS  Google Scholar 

  23. Li YY, Li XM, Pan XT, Xu XY, Song YZ, Yang RJ (2020) Mitigation the release of toxic PH3 and the fire hazard of PA6/AHP composite by MOFs. J Hazard Mater 395:122604

    Article  CAS  PubMed  Google Scholar 

  24. Xia Y, Jin FF, Mao ZW, Guan Y, Zheng AN (2014) Effects of ammonium polyphosphate to pentaerythritol ratio on composition and properties of carbonaceous foam deriving from intumescent flame-retardant polypropylene. Polym Degrad Stabil 107:64–73

    Article  CAS  Google Scholar 

  25. Liu XD, Guo J, Tang WF, Li HF, Gu XY, Sun J, Zhang S (2019) Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan. Compos Pt A-Appl Sci Manuf 119:291–298

    Article  CAS  Google Scholar 

  26. Yang HY, Wang X, Song L, Yu B, Yuan Y, Hu Y, Yuen RK (2014) Aluminum hypophosphite in combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams. Polym Adv Technol 25:1034–1043

    Article  CAS  Google Scholar 

  27. Wu SH, Deng D, Zhou L, Tang G (2019) Flame retardancy and thermal degradation of rigid polyurethane foams composites based on aluminum hypophosphite. Mater Res Express 6:105365

    Article  CAS  Google Scholar 

  28. Ge H, Tang G, Hu WZ, Wang BB, Pan Y, Song L, Hu Y (2015) Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6. J Hazard Mater 294:186–194

    Article  CAS  PubMed  Google Scholar 

  29. Chen XL, Ma CY, Jiao CM (2016) Enhancement of flame-retardant performance of thermoplastic polyurethane with the incorporation of aluminum hypophosphite and iron-graphene. Polym Degrad Stabil 129:275–285

    Article  CAS  Google Scholar 

  30. Standardization Administration of the People’s Republic of China (2009) Cellular plastics and rubbers-Determination of apparent density: GB/T 6343–2009[S]. Standards Press of China, Beijing ((in Chinese))

    Google Scholar 

  31. Standardization Administration of the People’s Republic of China (2008) Thermal insulation – Determination of steady-state thermal resistance and related properties – Guarded hot plate apparatus: GB/T 10294–2008[S]. Standards Press of China, Beijing ((in Chinese))

    Google Scholar 

  32. American Society for Testing Material International. Standard Test Method for Flame Height, Time of Burning, and Loss of Mass of Rigid Thermoset Cellular Plastics in a Vertical Position: ASTM D3014–19a[S]. West Conshohocken: ASTM International, 2019.

  33. American Society for Testing Material International. Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index): ASTM—D2863[S]. West Conshohocken: ASTM International, 2000.

  34. Xu WZ, Liu L, Wang SQ, Hu Y (2015) Synergistic effect of expandable graphite and aluminum hypophosphite on flame-retardant properties of rigid polyurethane foam. J Appl Polym Sci 42842:1–10

    Google Scholar 

  35. Tang G, Wang X, Xing WY, Zhang P, Wang BB, Hong NN, Yang W, Hu Y, Song L (2012) Thermal Degradation and Flame Retardance of Biobased Polylactide Composites Based on Aluminum Hypophosphite. Ind Eng Chem Res 51:12009–12016

    Article  CAS  Google Scholar 

  36. Tang G, Zhou L, Zhang P, Han ZQ, Chen DP, Liu XY, Zhou ZJ (2019) Effect of aluminum diethyl phosphinate on flame retardant and thermal properties of rigid polyurethane foam composites. J Therm Anal Calorim 140:625–636

    Article  Google Scholar 

  37. Tang G, Huang XJ, Ding HC, Wang X, Jiang SD, Zhou KQ, Wang BB, Yang W, Hu Y (2014) Combustion properties and thermal degradation behaviors of biobased polylactide composites filled with calcium hypophosphite. RSC Adv 4(18):8985–8993

    Article  CAS  Google Scholar 

  38. Liu C, Wu W, Shi YQ, Yang FQ, Liu MH, Chen ZX, Yu B, Feng YZ (2020) Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites. Compos Part B-Eng 203:108486

    Article  CAS  Google Scholar 

  39. Yang R, Wang B, Li MD, Zhang X, Li JC (2019) Preparation, characterization and thermal degradation behavior of rigid polyurethane foam using a malic acid based polyols. Ind Crop Prod 136:121–128

    Article  CAS  Google Scholar 

  40. Wang X, Zhang P, Huang ZC, Xing WY, Song L, Hu Y (2019) Effect of aluminum diethyl phosphinate on the thermal stability and flame retardancy of flexible polyurethane foams. Fire Saf J 106:72–79

    Article  CAS  Google Scholar 

  41. Yao Y, Bin Y, Shi Y, Ma C, Song L, Hu WZ, Hu Y (2018) Highly efficient catalysts for reducing toxic gases generation change with temperature of rigid polyurethane foam nanocomposites: A comparative investigation. Compos Pt A-Appl Sci Manuf 112:142–154

    Article  Google Scholar 

  42. Liu X, Salmeia KA, Rentsch D, Hao JW, Gaan S (2017) Thermal decomposition and flammability of rigid PU foams containing some DOPO derivatives and other phosphorus compounds. J Anal Appl Pyrolysis 124:219–229

    Article  CAS  Google Scholar 

  43. Shi XX, Jiang SH, Zhu JY, Li GH (2018) Peng XF (2018) Establishment of a highly efficient flame-retardant system for rigid polyurethane foams based on bi-phase flame-retardant actions. RSC Adv 8:9985–9995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lorenzetti A, Modesti M, Gallo E, Schartel B, Besco S, Roso M (2012) Synthesis of phosphinated polyurethane foams with improved fire behavior. Polym Degrad Stabil 97:2364–2369

    Article  CAS  Google Scholar 

  45. Liu L, Wang ZZ, Zhu MH (2019) Flame retardant mechanical and thermal insulating properties of rigid polyurethane foam modified by nano zirconium amino-tris-(methylene phosphonate) and expandable graphite. Polym Degrad Stabil 170:108997–108997

    Article  CAS  Google Scholar 

  46. Wu SH, Deng D, Zhou L, Zheng P, Tang G (2019) Flame retardancy and thermal degradation of rigid polyurethane foams composites based on aluminum hypophosphite. Mater Res Express 6:105365–106365

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Fund of China (No. U1833113, No. 51403004), Key Research Projects in Nanhu College of Jiaxing University (NO. N41472001-49) and the Jiaxing Science and Technology Project (No. 2020AD10020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaohe Feng or Gang Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Feng, Z., Zhao, R. et al. Enhancement of fire performance for rigid polyurethane foam composites by incorporation of aluminum hypophosphite and expanded graphite. Polym. Bull. 79, 10991–11012 (2022). https://doi.org/10.1007/s00289-022-04084-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04084-7

Keywords

Navigation