Skip to main content
Log in

Evaluation of physicochemical properties of polycaprolactone/gelatin/polydimethylsiloxane hybrid nanofibers as potential scaffolds for elastic tissue engineering

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Hybrid polymers have been used as biomaterials for tissue engineering recently. In this study, the hybrid fibrous scaffolds of polycaprolactone (PCL), gelatin (G) and polydimethylsiloxane (PDMS) with two various types of fiber arrangement were fabricated with different mass ratio by electrospinning. Physicochemical properties of fabricated scaffolds were evaluated using scanning electron microscopy, the immersion of scaffold samples, attenuated total reflectance Fourier transform infrared, X-ray diffraction and tensile strength analysis. Cytotoxicity analyses of scaffolds and human foreskin fibroblasts on the scaffolds were assessed by 3-(4, 5-dimethylthiazoyl-2-yl) 2, 5-diphenyltetrazolium bromide assay. Attachment to the scaffolds and morphology of fibroblasts on them were evaluated by hematoxylin–eosin staining and scanning electron microscopy. Networks and nanofibers less than 30 nm were created throughout the normal nanofibers of PCL/G/PDMS hybrid scaffolds that the efficiency of the homing and proliferation of the fibroblasts cells onto the scaffolds was improved. The PCL/G/PDMS hybrid scaffolds characteristics, especially morphology, mechanical properties and biocompatibility by altering the ratio PCL, G and PDMS show that these scaffolds are suitable for random and aligned tissue engineering applications, especially engineering of elastic tissues (nerve, uterus, bladder, trachea, heart valves, vein, vagina, liver, skin and others).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:1–19

    Article  Google Scholar 

  2. Habibi N, Kamaly N, Memic A, Shafiee H (2016) Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today 11:41–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HHK (2014) Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2:14017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747

    Article  CAS  Google Scholar 

  5. Li X, Wang L, Fan Y, Feng Q, Cui F-Z, Watari FJ (2013) Nanostructured scaffolds for bone tissue engineering. Biomed Mater Res A 101A:2424–2435

    Article  CAS  Google Scholar 

  6. Piskin E (1995) Biodegradable polymers as biomaterials. J Biomater Sci Polym Ed 6:775–795

    Article  CAS  PubMed  Google Scholar 

  7. Ji Y, Ghosh K, Zheng Shu X, Li B, Sokolov JC, Prestwich GD, Clark RAF, Rafailovich MH (2006) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27:3782–3792

    Article  CAS  PubMed  Google Scholar 

  8. Coenen AMJ, Bernaerts KV, Harings JAW, Jockenhoevel S, Ghazanfari S (2018) Elastic materials for tissue engineering applications: natural, synthetic, and hybrid polymers. Acta Biomater 79:60–82

    Article  CAS  PubMed  Google Scholar 

  9. Hajiali F, Tajbakhsh S, Shojaei A (2018) Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polym Rev 58:164–207

    Article  CAS  Google Scholar 

  10. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  CAS  Google Scholar 

  11. CSIRO Molecular Science, Bag 10, Clayton South MDC, Vic 3169, Australia and Gunatillake P (2003) Eur Cell Mater 5:1–16

  12. Bhat S, Chen C, Day DA (2013) Effects of a polycaprolactone (PCL) tissue scaffold in Rattus norvegicus on blood flow. MRS Proc 1498:27–31

    Article  Google Scholar 

  13. Zhao P, Gu H, Mi H, Rao C, Fu J, Turng L (2018) Fabrication of scaffolds in tissue engineering: a review. Front Mech Eng 13:107–119

    Article  Google Scholar 

  14. Jammalamadaka U, Tappa K (2018) Recent advances in biomaterials for 3D printing and tissue engineering. J Funct Biomater 9:22

    Article  PubMed Central  Google Scholar 

  15. Heydari Z, Mohebbi-Kalhori D, Afarani MS (2017) Engineered electrospun polycaprolactone (PCL)/octacalcium phosphate (OCP) scaffold for bone tissue engineering. Mater Sci Eng C 81:127–132

    Article  CAS  Google Scholar 

  16. Kundu J, Shim J-H, Jang J, Kim S-W, Cho D-W (2015) An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9:1286–1297

    Article  CAS  PubMed  Google Scholar 

  17. Zhang YZ, Venugopal J, Huang Z-M, Lim CT (2005) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6:2583–2589

    Article  CAS  PubMed  Google Scholar 

  18. Rajzer I, Rom M, Menaszek E, Pasierb P (2015) Conductive PANI patterns on electrospun PCL/gelatin scaffolds modified with bioactive particles for bone tissue engineering. Mater Lett 138:60–63

    Article  CAS  Google Scholar 

  19. Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3:321–330

    Article  CAS  PubMed  Google Scholar 

  20. Jing X, Mi H-Y, Wang X-C, Peng X-F, Turng L-S (2015) Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan–poly(ε-caprolactone) copolymers for bone tissue engineering. ACS Appl Mater Interfaces 7:6955–6965

    Article  CAS  PubMed  Google Scholar 

  21. Gomes SR, Rodrigues G, Martins GG, Roberto MA, Mafra M, Henriques CMR, Silva JC (2015) In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: a comparative study. Mater Sci Eng C 46:348–358

    Article  CAS  Google Scholar 

  22. Gautam S, Dinda AK, Mishra NC (2013) Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C 33:1228–1235

    Article  CAS  Google Scholar 

  23. Mansoori S, Davarnejad R, Matsuura T (2020) Membranes based on non-synthetic (natural) polymers for wastewater treatment. Polym Test 84:106381

    Article  CAS  Google Scholar 

  24. Courtney TH (2013) Mechanical behavior of materials. McGraw Hill Education (India), New Delhi

    Google Scholar 

  25. Rogers JA, Nuzzo RG (2005) Recent progress in soft lithography. Mater Today 8:50–56

    Article  CAS  Google Scholar 

  26. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40

    Article  CAS  PubMed  Google Scholar 

  27. Wang Zh, Volinsky AA, Gallant N (2011) Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques. University of South Florida Scholar Commons

  28. Nalwa HS (ed) (2003) Handbook of photochemistry and photobiology. American Scientific Publishers, Stevenson Ranch, CA

    Google Scholar 

  29. Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119:5298–5415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sagitha P, Reshmi CR, Sundaran SP, Sujith A (2018) Recent advances in post-modification strategies of polymeric electrospun membranes. Eur Polym 105:227–249

    Article  CAS  Google Scholar 

  31. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211

    Article  CAS  PubMed  Google Scholar 

  32. Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, Dehghani F, Khademhosseini A (2014) Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater 10:11–25

    Article  CAS  PubMed  Google Scholar 

  33. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2008) Electrospun poly(3-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539

    Article  CAS  PubMed  Google Scholar 

  34. Kim MS, Jun I, Shin YM, Jang W, Kim SI, Shin H (2010) The development of genipin-crosslinked poly(caprolactone) (PCL)/gelatin nanofibers for tissue engineering applications. Macromol Biosci 10:91–100

    Article  CAS  PubMed  Google Scholar 

  35. Varshney N, Sahi AK, Vajanthri KY, Poddar S, Balavigneswaran CK, Prabhakar A, Rao V, Mahto SK (2019) Culturing melanocytes and fibroblasts within three-dimensional macroporous PDMS scaffolds: towards skin dressing material. Cytotechnology 71:287–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kai D, Prabhakaran MP, Chan BQY, Liow SS, Ramakrishna S, Xu F, Loh XJ (2016) Elastic poly(ε-caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering. Biomed Mater 11:015007

    Article  PubMed  Google Scholar 

  37. Dehghan M, Khajeh-Mehrizi M, Nikukar H (2020) Modeling and optimizing a polycaprolactone/gelatin/polydimethylsiloxane nanofiber scaffold for tissue engineering: using response surface methodology. J Text Inst 112:482–493

    Article  Google Scholar 

  38. Dehghan M, Nikukar H, Khajeh-Mehrizi M (2020) Optimizing the physical parameters of polycaprolactone–gelatin–polydimethylsiloxane composite nanofibr scaffold for tissue engineering application. J Ind Text. https://doi.org/10.1177/1528083720960156

    Article  Google Scholar 

  39. Dehghan N, Tavanaie MA, Payvandy P (2015) Morphology study of nanofibers produced by extraction from polymer blend fibers using image processing. Korean J Chem Eng 32:1928–1937

    Article  CAS  Google Scholar 

  40. Ifkovits JL, Burdick JA (2007) Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13:2369–2385

    Article  CAS  PubMed  Google Scholar 

  41. Pereira RF, Carvalho A, Gil MH, Mendes A, Bártolo PJ (2013) Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films. Carbohydr Polym 98:311–320

    Article  CAS  PubMed  Google Scholar 

  42. Lu W, Ma M, Xu H, Zhang B, Cao X, Guo Y (2015) Gelatin nanofibers prepared by spiral-electrospinning and cross-linked by vapor and liquid-phase glutaraldehyde. Mater Lett 140:1–4

    Article  CAS  Google Scholar 

  43. Morsy R, Hosny M, Reisha F, Elnimr T (2017) Developing and physicochemical evaluation of cross-linked electrospun gelatin-glycerol nanofibrous membranes for medical applications. J Mol Struct 1135:222–227

    Article  CAS  Google Scholar 

  44. Zhan J, Morsi Y, El-Hamshary H, Al-Deyab SS, Mo X (2016) In vitro evaluation of electrospun gelatin-glutaraldehyde nanofibers. Front Mater Sci 10:90–100

    Article  Google Scholar 

  45. Sun K, Xie P, Wang Z, Su T, Shao Q, Ryu JE, Zhang X, Guo J, Shankar A, Li J, Fan R, Cao D, Guo Z (2017) Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125:50–57

    Article  CAS  Google Scholar 

  46. Cui H, Sinko PJ (2012) The role of crystallinity on differential attachment/proliferation of osteoblasts and fibroblasts on poly (caprolactone-co-glycolide) polymeric surfaces. Front Mater Sci 6:47–59

    Article  Google Scholar 

  47. Heikkilä P, Harlin A (2008) Parameter study of electrospinning of polyamide-6. Eur Polym J 44:3067–3079

    Article  Google Scholar 

  48. Monroy DAP, Bravo JMC, Mercado IES, Gómez LJV (2018). In tissue regeneration, HA. hay E-S Kaoud, Ed. InTech

  49. Persson NE, McBride MA, Grover MA, Reichmanis E (2017) Automated analysis of orientational order in images of fibrillar materials. Chem Mater 29:3–14

    Article  CAS  Google Scholar 

  50. Xue J, He M, Liu H, Niu Y, Crawford A, Coates PD, Chen D, Shi R, Zhang L (2014) Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials 35:9395–9405

    Article  CAS  PubMed  Google Scholar 

  51. Kai D, Liow SS, Loh XJ (2014) Biodegradable polymers for electrospinning: towards biomedical applications. Mater Sci Eng C 45:659–670

    Article  CAS  Google Scholar 

  52. Xue J, He M, Liang Y, Crawford A, Coates P, Chen D, Shi R, Zhang L (2014) Fabrication and evaluation of electrospun PCL–gelatin micro-/nanofiber membranes for anti-infective GTR implants. J Mater Chem B 2:6867–6877

    Article  CAS  PubMed  Google Scholar 

  53. Mohanty S, Alm M, Hemmingsen M, Dolatshahi-Pirouz A, Trifol J, Thomsen P, Dufva M, Wolff A, Emnéus J (2016) 3D printed silicone-hydrogel scaffold with enhanced physicochemical properties. Biomacromolecules 17:1321–1329

    Article  CAS  PubMed  Google Scholar 

  54. Liu Y, Chan-Park MB (2010) A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials 31:1158–1170

    Article  CAS  PubMed  Google Scholar 

  55. Beachley V, Wen X (2009) Fabrication of nanofiber reinforced protein structures for tissue engineering. Mater Sci Eng C 29:2448–2453

    Article  CAS  Google Scholar 

  56. Chiono V, Tonda-Turo C (2015) Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol 131:87–104

    Article  PubMed  Google Scholar 

  57. Manoogian SJ, Bisplinghoff JA, Kemper AR, Duma SM (2012) Dynamic material properties of the pregnant human uterus. J Biomech 45:1724–1727

    Article  PubMed  Google Scholar 

  58. Omari EA, Varghese T, Kliewer MA, Harter J, Hartenbach EM (2015) Dynamic and quasi-static mechanical testing for characterization of the viscoelastic properties of human uterine tissue. J Biomech 48:1730–1736

    Article  PubMed  PubMed Central  Google Scholar 

  59. Strauss JF, Barbieri RL, Eds, Yen & Jaffe’s (2019) Reproductive endocrinology: physiology, pathophysiology, and clinical management. Elsevier, Philadelphia, PA

  60. Martins PALS, Filho ALS, Fonseca AMRM, Santos A, Santos L, Mascarenhas T, Natal Jorge RM, Ferreira AJM (2011) Uniaxial mechanical behavior of the human female bladder. Int Urogynecol J 22:991–995

    Article  PubMed  Google Scholar 

  61. Chantereau P, Brieu M, Kammal M, Farthmann J, Gabriel B, Cosson M (2014) Mechanical properties of pelvic soft tissue of young women and impact of aging. Int Urogynecol J 25:1547–1553

    Article  CAS  PubMed  Google Scholar 

  62. Atala A (2011) Tissue engineering of human bladder. Br Med Bull 97:81–104

    Article  PubMed  Google Scholar 

  63. Trabelsi O, Del Palomar AP, López-villalobos JL, Ginel A, Doblaré M (2010) Experimental characterization and constitutive modeling of the mechanical behavior of the human trachea. Med Eng Phys 32:76–82

    Article  CAS  PubMed  Google Scholar 

  64. Crowley C, Birchall M, Seifalian AM (2015) Trachea transplantation: from laboratory to patient: trachea transplantation. J Tissue Eng Regen Med 9:357–367

    Article  PubMed  Google Scholar 

  65. Liao J, Joyce EM, Sacks MS (2008) Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 29:1065–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vesely I (2005) Heart valve tissue engineering. Circ Res 978:743–755

    Article  Google Scholar 

  67. Feola A, Abramowitch S, Jones K, Stein S, Moalli P (2010) Parity negatively impacts vaginal mechanical properties and collagen structure in rhesus macaques. Am J Obstet Gynecol 203:595.e1-595.e8

    Article  CAS  Google Scholar 

  68. Brandão R, da Silveira SD, Milhem Haddad J, Katalin I, de Jármy-Di BZ, Nastri F, GoncalvesMarkos Kawabata M, Silva Carramão SD, Alves Rodrigues C, ChadaBaracat C, Pedro Flores Auge A (2015) Multicenter, randomized trial comparing native vaginal tissue repair and synthetic mesh repair for genital prolapse surgical treatment. Int Urogynecol J 26:335–342

    Article  Google Scholar 

  69. Karimi A, Navidbakhsh M, Alizadeh M, Shojaei A (2014) A comparative study on the mechanical properties of the umbilical vein and umbilical artery under uniaxial loading. Artery Res 8:51–56

    Article  Google Scholar 

  70. AlhosseiniHamedani B, Navidbakhsh M, AhmadiTafti H (2012) Comparison between mechanical properties of human saphenous vein and umbilical vein. Biomed Eng 11:59

    Google Scholar 

  71. Sankaran KK, Vasanthan KS, Krishnan UM, Sethuraman S (2014) Development and evaluation of axially aligned nanofibres for blood vessel tissue engineering: small-diameter aligned nanofibrous vascular graft. J Tissue Eng Regen Med 8:640–651

    Article  CAS  PubMed  Google Scholar 

  72. Zorlutuna P, Elsheikh A, Hasirci V (2009) Nanopatterning of collagen scaffolds improve the mechanical properties of tissue engineered vascular grafts. Biomacromolecules 10:814–821

    Article  CAS  PubMed  Google Scholar 

  73. Mattei G, Ahluwalia A (2016) Sample, testing and analysis variables affecting liver mechanical properties: a review. Acta Biomater 45:60–71

    Article  PubMed  Google Scholar 

  74. Yoon No D, Lee K-H, Lee J, Lee S-H (2015) 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip 15:3822–3837

    Article  CAS  PubMed  Google Scholar 

  75. NíAnnaidh A, Bruyère K, Destrade M, Gilchrist MD, Otténio M (2012) Characterization of the anisotropic mechanical properties of excised human skin. J Mech Behav Biomed Mater 5:139–148

    Article  Google Scholar 

  76. Bashkatov AN, Genina EA, Tuchin VV (2011) Optical properties of skin, subcutaneous, and muscle tissues: a review. J Innov Opt Health Sci 4:9–38

    Article  Google Scholar 

  77. Jansen LH, Rottier PB (1958) Some mechanical properties of human abdominal skin measured on excised strips. Dermatology 117:65–83

    Article  CAS  Google Scholar 

  78. Dunn MG, Silver FH (1983) Viscoelastic behavior of human connective tissues: relative contribution of viscous and elastic components. Connect Tissue Res 12:59–70

    Article  CAS  PubMed  Google Scholar 

  79. Jacquemoud C, Bruyere-Garnier K, Coret M (2007) Methodology to determine failure characteristics of planar soft tissues using a dynamic tensile test. J Biomech 40:468–475

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Iran national science foundation (INSF; Project No. 97014466), Yazd University Research Council and Yazd Reproductive Sciences Institute for their financial support. We are grateful to Dr. Behrouz Aflatoonian and Fatemeh Sadeghian-Nodoushan for their cooperation and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Khajeh Mehrizi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the data presented in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M., Nikukar, H. & Khajeh Mehrizi, M. Evaluation of physicochemical properties of polycaprolactone/gelatin/polydimethylsiloxane hybrid nanofibers as potential scaffolds for elastic tissue engineering. Polym. Bull. 79, 10881–10908 (2022). https://doi.org/10.1007/s00289-021-04071-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04071-4

Keywords

Navigation