Skip to main content
Log in

Development of ostrich eggshell and nano-levan-based edible biopolymer composite films: characterization and bioactivity

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Here, edible films were prepared by using levan biopolymer and different proportions of powdered ostrich eggshell. These films were characterized, and their bioactivity was measured. Adding ostrich eggshells to the levan films made the film surface smoother. Ostrich eggshell added to the films reduced the water vapor permeability in the films. Levan biopolymer film and ostrich eggshell showed high antioxidant activity when used together (%83.03). The ERL sample without ostrich eggshell has an antimicrobial effect only on bacteria. The highest antimicrobial effect was measured on Pseudomonas aeruginosa with the film sample EROL-6 containing 1.2 g of ostrich eggshell. ERL film samples inhibited the biofilm of Pseudomonas aeruginosa by 68.6%. This is the first study using ostrich eggshells to produce edible film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Patient-related data not included in the paper might be subject to patient confidentiality. All other data are available from the authors upon reasonable request.

References

  1. Yoo SH, Yoon EJ, Cha J, Lee HG (2004) Antitumor activity of levan polysaccharides from selected microorganisms. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2004.01.002

    Article  PubMed  Google Scholar 

  2. Matsuhira H, Tamura KI, Tamagake H et al (2014) High production of plant type levan in sugar beet transformed with timothy (Phleum pratense) 6-SFT genes. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2014.09.025

    Article  PubMed  Google Scholar 

  3. Koşarsoy Ağçeli G, Cihangir N (2020) Nano-sized biopolymer levan: its antimicrobial, anti-biofilm and anti-cancer effects. Carbohydr Res. https://doi.org/10.1016/j.carres.2020.108068

    Article  PubMed  Google Scholar 

  4. Aramsangtienchai P, Kongmon T, Pechroj S, Srisook K (2020) Enhanced production and immunomodulatory activity of levan from the acetic acid bacterium, Tanticharoenia sakaeratensis. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.07.001

    Article  PubMed  Google Scholar 

  5. Srikanth R, Siddartha G, Sundhar Reddy CHSS et al (2015) Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2014.12.079

    Article  PubMed  Google Scholar 

  6. Öner ET, Hernández L, Combie J (2016) Review of Levan polysaccharide: from a century of past experiences to future prospects. Biotechnol Adv 34:827–844

    Article  PubMed  Google Scholar 

  7. Srikanth R, Reddy CHSSS, Siddartha G et al (2015) Review on production, characterization and applications of microbial levan. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2014.12.003

    Article  PubMed  Google Scholar 

  8. Koşarsoy Ağçeli G, Hammamchi H, Cihangir N (2021) Novel levan/bentonite/essential oil films: characterization and antimicrobial activity. J Food Sci Technol. https://doi.org/10.1007/s13197-021-05009-4

    Article  PubMed  Google Scholar 

  9. Cooper RG (2000) Critical factors in ostrich (Struthio camelus australis) production: a focus on southern Africa. Worlds Poult Sci J. https://doi.org/10.1079/wps20000019

    Article  Google Scholar 

  10. Al-Nasser A, Al-Khalaifa H, Holleman K, Al-Ghalaf W (2003) Ostrich production in the arid environment of Kuwait. J Arid Environ. https://doi.org/10.1006/jare.2001.0876

    Article  Google Scholar 

  11. Gautron J, Bain M, Solomon S, Nys Y (1996) Soluble matrix of hen’s eggshell extracts changes in vitro the rate of calcium carbonate precipitation and crystal morphology. Br Poult Sci. https://doi.org/10.1080/00071669608417914

    Article  PubMed  Google Scholar 

  12. Ferreira JRM, Louro LHL, Costa AM et al (2016) Ostrich eggshell as calcium source for the synthesis of hydroxyapatite and hydroxyapatite partially substituted with zinc. Ceramica. https://doi.org/10.1590/0366-69132016623642002

    Article  Google Scholar 

  13. Dupoirieux L (1999) Ostrich eggshell as a bone substitute: a preliminary report of its biological behaviour in animals–a possibility in facial reconstructive surgery. Br J Oral Maxillofac Surg. https://doi.org/10.1054/bjom.1999.0041

    Article  PubMed  Google Scholar 

  14. Faridi H, Arabhosseini A (2018) Application of eggshell wastes as valuable and utilizable products: a review. Res Agric Eng. https://doi.org/10.17221/6/2017-RAE

    Article  Google Scholar 

  15. Rezaei R, Mohadesi M, Moradi GR (2013) Optimization of biodiesel production using waste mussel shell catalyst. Fuel. https://doi.org/10.1016/j.fuel.2013.03.004

    Article  Google Scholar 

  16. Martin-Luengo MA, Yates M, Ramos M et al (2011) Biomaterials from beer manufacture waste for bone growth scaffolds. Green Chem Lett Rev. https://doi.org/10.1080/17518253.2010.544331

    Article  Google Scholar 

  17. Murakami FS, Rodrigues PO, De Campos CMT, Silva MAS (2007) Physicochemical study of CaCO3 from egg shells. Cienc e Tecnol Aliment. https://doi.org/10.1590/S0101-20612007000300035

    Article  Google Scholar 

  18. Kam S-K, Hyun S-S, Lee M-G (2011) Removal of divalent heavy metal ions by Na-P1 synthesized from Jeju scoria. J Environ Sci. https://doi.org/10.5322/jes.2011.20.10.1337

    Article  Google Scholar 

  19. Ss K, Indumathi MP, Rajarajeswari GR (2019) Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.11.195

    Article  Google Scholar 

  20. ASTM Committee D06, ASTM D644–99 (2002) Standard test method for moisture content of paper and paperboard by oven drying. American National Standard

  21. Lee JH, Jeong D, Kanmani P (2019) Study on physical and mechanical properties of the biopolymer/silver based active nanocomposite films with antimicrobial activity. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115159

    Article  PubMed  Google Scholar 

  22. Zhang W, Chen J, Chen Y et al (2016) Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2015.11.031

    Article  PubMed  Google Scholar 

  23. Giteru SG, Coorey R, Bertolatti D et al (2015) Physicochemical and antimicrobial properties of citral and quercetin incorporated kafirin-based bioactive films. Food Chem. https://doi.org/10.1016/j.foodchem.2014.07.077

    Article  PubMed  Google Scholar 

  24. Wang C, Chang T, Dong S et al (2020) Biopolymer films based on chitosan/potato protein/linseed oil/ZnO NPs to maintain the storage quality of raw meat. Food Chem. https://doi.org/10.1016/j.foodchem.2020.127375

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maryam Adilah ZA, Jamilah B, Nur Hanani ZA (2018) Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2017.08.017

    Article  Google Scholar 

  26. Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2010.04.003

    Article  Google Scholar 

  27. Kumari M, Mahajan H, Joshi R, Gupta M (2017) Development and structural characterization of edible films for improving fruit quality. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2017.02.003

    Article  Google Scholar 

  28. Valgas C, De Souza SM, Smânia EFA, Smânia A (2007) Screening methods to determine antibacterial activity of natural products. Brazilian J Microbiol. https://doi.org/10.1590/S1517-83822007000200034

    Article  Google Scholar 

  29. O’Toole GA (2010) Microtiter dish biofilm formation assay. J Vis Exp. https://doi.org/10.3791/2437

    Article  Google Scholar 

  30. Feng QL, Zhu X, Li HD, Kim TN (2001) Crystal orientation regulation in ostrich eggshells. J Cryst Growth. https://doi.org/10.1016/S0022-0248(01)01611-6

    Article  Google Scholar 

  31. Texier PJ, Porraz G, Parkington J et al (2010) A howiesons poort tradition of engraving ostrich eggshell containers dated to 60,000 years ago at Diepkloof rock shelter, South Africa. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0913047107

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen X, Gao H, Ploehn HJ (2014) Montmorillonite-levan nanocomposites with improved thermal and mechanical properties. Carbohydr Polym 101:565–573. https://doi.org/10.1016/j.carbpol.2013.09.073

    Article  CAS  PubMed  Google Scholar 

  33. Mantovan J, Bersaneti GT, Faria-Tischer PCS et al (2018) Use of microbial levan in edible films based on cassava starch. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2018.08.003

    Article  Google Scholar 

  34. Portugal S, Maurer G, Cassey P (2010) Eggshell permeability: a standard technique for determining interspecific rates of water vapor conductance. Physiol Biochem Zool. https://doi.org/10.1086/656287

    Article  PubMed  Google Scholar 

  35. Nys Y, Gautron J, Garcia-Ruiz JM, Hincke MT (2004) Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. Comptes Rendus–Palevol. https://doi.org/10.1016/j.crpv.2004.08.002

    Article  Google Scholar 

  36. Mikšík I, Eckhardt A, Sedláková P, Mikulikova K (2007) Proteins of insoluble matrix of avian (Gallus Gallus) eggshell. Connect Tissue Res. https://doi.org/10.1080/03008200601003116

    Article  PubMed  Google Scholar 

  37. Gorchein A, Lim CK, Cassey P (2009) Extraction and analysis of colourful eggshell pigments using HPLC and HPLC/electrospray ionization tandem mass spectrometry. Biomed Chromatogr. https://doi.org/10.1002/bmc.1158

    Article  PubMed  Google Scholar 

  38. Romano N, Santos M, Mobili P et al (2016) Effect of sucrose concentration on the composition of enzymatically synthesized short-chain fructo-oligosaccharides as determined by FTIR and multivariate analysis. Food Chem. https://doi.org/10.1016/j.foodchem.2016.02.002

    Article  PubMed  Google Scholar 

  39. Santos MI, Araujo-Andrade C, Tymczyszyn EE, Gómez-Zavaglia A (2014) Determination of amorphous/rubbery states in freeze-dried prebiotic sugars using a combined approach of near-infrared spectroscopy and multivariate analysis. Food Res Int. https://doi.org/10.1016/j.foodres.2014.07.040

    Article  PubMed  Google Scholar 

  40. Brown CR, Peinke D, Loveridge A (1996) Mortality in near-term ostrich embryos during artificial incubation. Br Poult Sci. https://doi.org/10.1080/00071669608417838

    Article  PubMed  Google Scholar 

  41. Horrocks NPC, Hegemann A, Matson KD et al (2012) Immune indexes of larks from desert and temperate regions show weak associations with life history but stronger links to environmental variation in microbial abundance. Physiol Biochem Zool. https://doi.org/10.1086/666988

    Article  PubMed  Google Scholar 

  42. Horrocks NPC, Hine K, Hegemann A et al (2014) Are antimicrobial defences in bird eggs related to climatic conditions associated with risk of trans-shell microbial infection? Front Zool. https://doi.org/10.1186/1742-9994-11-49

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen X, Li X, He Z et al (2019) Comparative study of eggshell antibacterial effectivity in precocial and altricial birds using Escherichia coli. PLoS One. https://doi.org/10.1371/journal.pone.0220054

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Gözde Koşarsoy Ağçeli contributed to investigation, resources, writing—original draft.

Corresponding author

Correspondence to Gözde Koşarsoy Ağçeli.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koşarsoy Ağçeli, G. Development of ostrich eggshell and nano-levan-based edible biopolymer composite films: characterization and bioactivity. Polym. Bull. 79, 11201–11215 (2022). https://doi.org/10.1007/s00289-021-04069-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04069-y

Keywords

Navigation