Skip to main content
Log in

Improving poly-γ-glutamic acid production by Bacillus licheniformis ATCC 9945a strain under citrate and glutamate pulsed feedings and biopolymer characteristic evaluation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly-γ-glutamic acid (γ-PGA) is a biopolymer composed of glutamate monomers. This polypeptide is used in the food, biomedical, and biopharmaceutical industries. It is used for wound healing and surgical suturing and applied as a drug carrier and drug delivery agent. Fermentative production of this polyamide is a usual method accomplished by microbial cultures. The E culture medium is common for the biopolymers synthesis by Bacillus licheniformis ATCC 9945a strain because of the high attained production amounts. Nevertheless, in this study, the culture medium E compounds were modified to attain a novel medium for more production of γ-PGA. The next purpose of the research was more production increasing of γ-PGA by using a novel simultaneous pulsed feeding strategy of citrate and glutamate in the modified E medium. Two pulsed feeding times of 24th and 48th hours with proper amounts of citrate and glutamate resulted in enhanced production of γ-PGA to 119.31 g/l, which is the highest amount among previous researches. This polyamide’s physical and chemical structures were investigated by SEM and FTIR, respectively. These analyses revealed a uniform nanostructured polyamide with chemical specifications similar to standard samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

γ-PGA:

Poly-γ-glutamic acid

DO:

Dissolved oxygen

rpm:

Rounds per minute

ME:

Modified E

GPC:

Gel permeation chromatography

OD:

Optical density

DCW:

Dry-cell weight

HPLC:

High-performance liquid chromatography

FTIR:

Fourier transform infrared spectroscopy

SEM:

Scanning electron microscope

TCA:

Tricarboxylic acid

GABA:

Gamma-aminobutyric acid

References

  1. Ogunleye A, Bhat A, Irorere VU, Hill D, Williams C, Radecka I (2015) Poly-γ-glutamic acid: production, properties and applications. Microbiology 161(1):1–17. https://doi.org/10.1099/mic.0.081448-0

    Article  CAS  PubMed  Google Scholar 

  2. Luo Z, Guo Y, Liu J, Qiu H, Zhao M, Zou W, Li S (2016) Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives. Biotechnol Biofuels 9(1):134. https://doi.org/10.1186/s13068-016-0537-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xavier JR, Madhankumar MM, Natarajan G, Ramana KV, Semwal AD (2019) Optimized production of Poly γ-glutamic acid (γ-PGA) using Bacillus licheniformis and its application as cryoprotectant for probiotics. Biotechnol Appl Biochem 67(6):892–902. https://doi.org/10.1002/bab.1879

    Article  CAS  Google Scholar 

  4. Fang J, Liu Y, Huan C, Xu L, Ji G, Yan Z (2020) Comparison of poly-γ-glutamic acid production between sterilized and non-sterilized solid-state fermentation using agricultural waste as substrates. J Clean Prod 255:120248. https://doi.org/10.1016/j.jclepro.2020.120248

    Article  CAS  Google Scholar 

  5. Kedia G, Hill D, Hill R, Radecka I (2010) Production of poly-γ-glutamic acid by Bacillus subtilis and Bacillus licheniformis with different growth media. J Nanosci Nanotechnol 10(9):5926–5934. https://doi.org/10.1166/jnn.2010.2614

    Article  CAS  PubMed  Google Scholar 

  6. Wei X, Ji Z, Chen S (2010) Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-γ-glutamic acid. Appl Biochem Biotechnol 160(5):1332–1340. https://doi.org/10.1007/s12010-009-8681-1

    Article  CAS  PubMed  Google Scholar 

  7. Kongklom N, Luo H, Shi Z, Pechyen C, Chisti Y, Sirisansaneeyakul S (2015) Production of poly-γ-glutamic acid by glutamic acid-independent Bacillus licheniformis TISTR 1010 using different feeding strategies. Biochem Eng J 100:67–75. https://doi.org/10.1016/j.bej.2015.04.007

    Article  CAS  Google Scholar 

  8. Thorne CB, Gómez CG, Noyes HE, Housewright RD (1954) Production of glutamyl polypeptide by Bacillus subtilis. J Bacteriol 68(3):307–315. https://doi.org/10.1128/JB.68.3.307-315.1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leonard CG, Housewright RD, Thorne CB (1958) Effects of some metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis. J Bacteriol 76(5):499–503. https://doi.org/10.1128/JB.76.5.499-503.1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Birrer GA, Cromwick AM, Gross RA (1994) γ-Poly (glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies. Int J Biol Macromol 16(5):265–275. https://doi.org/10.1016/0141-8130(94)90032-9

    Article  CAS  PubMed  Google Scholar 

  11. Cromwick AM, Gross RA (1995) Effects of manganese (II) on Bacillus licheniformis ATCC 9945A physiology and γ-poly (glutamic acid) formation. Int J Biol Macromol 17(5):259–267. https://doi.org/10.1016/0141-8130(95)98153-p

    Article  CAS  PubMed  Google Scholar 

  12. Cromwick AM, Birrer GA, Gross RA (1996) Effects of pH and aeration on γ-poly (glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol Bioeng 50(2):222–227. https://doi.org/10.1002/(sici)1097-0290(19960420)50:2<222::aid-bit10>3.0.co;2-p

    Article  CAS  PubMed  Google Scholar 

  13. Feng J, Shi Q, Zhou G, Wang L, Chen A, Xie X, Huang X, Hu W (2017) Improved production of poly-γ-glutamic acid with low molecular weight under high ferric ion concentration stress in Bacillus licheniformis ATCC 9945a. Process Biochem 56:30–36. https://doi.org/10.1016/j.procbio.2017.02.017

    Article  CAS  Google Scholar 

  14. Troy FA (1973) Chemistry and biosynthesis of the poly (γ-d-glutamyl) Capsule in Bacillus licheniformis I. properties of the membrane-mediated biosynthetic reaction. J Biol Chem 248(1):305–315. https://doi.org/10.1016/S0021-9258(19)44475-X

    Article  CAS  PubMed  Google Scholar 

  15. Troy FA (1973) Chemistry and biosynthesis of the poly (γ-D-glutamyl) capsule in Bacillus licheniformis II. characterization and structural properties of the enzymatically synthesized polymer. J Biol Chem 248(1):316–324. https://doi.org/10.1016/S0021-9258(19)44476-1

    Article  CAS  PubMed  Google Scholar 

  16. Ko YH, Gross RA (1998) Effects of glucose and glycerol on γ-poly (glutamic acid) formation by Bacillus licheniformis ATCC 9945a. Biotechnol Bioeng 57(4):430–437. https://doi.org/10.1002/(sici)1097-0290(19980220)57:4<430::aid-bit6>3.0.co;2-n

    Article  CAS  PubMed  Google Scholar 

  17. Mitsunaga H, Meissner L, Büchs J, Fukusaki E (2016) Branched chain amino acids maintain the molecular weight of poly (γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation. J Biosci Bioeng 122(4):400–405. https://doi.org/10.1016/j.jbiosc.2016.03.007

    Article  CAS  PubMed  Google Scholar 

  18. Mitsunaga H, Meissner L, Palmen T, Bamba T, Büchs J, Fukusaki E (2016) Metabolome analysis reveals the effect of carbon catabolite control on the poly (γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945. J Biosci Bioeng 121(4):413–419. https://doi.org/10.1016/j.jbiosc.2015.08.012

    Article  CAS  PubMed  Google Scholar 

  19. Giannos SA, Shah D, Gross RA, Kaplan DL, Mayer JM (1990) Poly (glutamic acid) produced by bacterial fermentation. In: Dawes EA (ed) Novel biodegradable microbial polymers, NATO ASI Series (Series E: Applied Sciences), 186 Springer, Dordrecht, pp 457–460 https://doi.org/10.1007/978-94-009-2129-0_46

  20. Yoon SH, Do JH, Lee SY, Chang HN (2000) Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis. Biotechnol Lett 22(7):585–588. https://doi.org/10.1023/A:1005625026623

    Article  CAS  Google Scholar 

  21. Goto A, Kunioka M (1992) Biosynthesis and hydrolysis of poly (γ-glutamic acid) from Bacillus subtilis IF03335. Biosci Biotechnol Biochem 56(7):1031–1035. https://doi.org/10.1271/bbb.56.1031

    Article  CAS  PubMed  Google Scholar 

  22. Wang F, Liang J, Wang W, Fu D, Xiao W (2017) A new and efficient method for purification of poly-γ-glutamic acid from high-viscosity fermentation broth. Trop J Pharm Res 16(6):1267–1275. https://doi.org/10.4314/tjpr.v16i6.9

    Article  CAS  Google Scholar 

  23. Lin B, Li Z, Zhang H, Wu J, Luo M (2016) Cloning and expression of the γ-polyglutamic acid synthetase gene pgsBCA in Bacillus subtilis WB600. Biomed Res Int. https://doi.org/10.1155/2016/3073949

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pereira CL, Antunes JC, Gonçalves RM, Ferreira-da-Silva F, Barbosa MA (2012) Biosynthesis of highly pure poly-γ-glutamic acid for biomedical applications. J Mater Sci Mater Med 23(7):1583–1591. https://doi.org/10.1007/s10856-012-4639-x

    Article  CAS  PubMed  Google Scholar 

  25. Cromwick AM, Gross RA (1995) Investigation by NMR of metabolic routes to bacterial γ-poly (glutamic acid) using 13C-labeled citrate and glutamate as media carbon sources. Can J Microbiol 41(10):902–909. https://doi.org/10.1139/m95-124

    Article  CAS  Google Scholar 

  26. Zhang C, Wu D, Qiu X (2018) Stimulatory effects of amino acids on γ-polyglutamic acid production by Bacillus subtilis. Sci Rep. https://doi.org/10.1038/s41598-018-36439-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Malek Ashtar University of Technology for providing all the materials and equipment used in this research.

Funding

There were no funds specified for this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in the preparation of the manuscript and its final version has been approved by all of them.

Corresponding author

Correspondence to Ali Bahrami.

Ethics declarations

Conflict of interest

The authors certify that there is no conflict of interest regarding the material discussed in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimzadeh Kouchesfahani, M., Bahrami, A. & Babaeipour, V. Improving poly-γ-glutamic acid production by Bacillus licheniformis ATCC 9945a strain under citrate and glutamate pulsed feedings and biopolymer characteristic evaluation. Polym. Bull. 79, 11339–11352 (2022). https://doi.org/10.1007/s00289-021-04026-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04026-9

Keywords

Navigation