Skip to main content
Log in

The utilization of cross-linked gelatin/PAMAM aerogels as heavy metal ions bio-adsorbents from aqueous solutions

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Three bio-based aerogels were prepared using a cross-linked blend of gelatin and different ratios of poly(amidoamine) hyperbranched polymer (PAMAM) via freeze-drying technique. These aerogels are assigned as cGel/PAM 1, cGel/PAM 2, and cGel/PAM 3. Aerogel of cross-linked gelatin cGel was prepared for comparison. The fabricated aerogels were characterized using FT-IR and determination of their nitrogen content. The macro-porous structures and the surface areas were investigated using the scanning electron microscope, Brunauer, Emmett and Teller (BET), and Barrett, Joyner, and Halenda (BJH) equations. The adsorption efficiencies of heavy metal ions Cr(VI) and Cd(II) were assessed in terms of the contact time and dose-effect. The adsorption results of the heavy metal ions were fitted using Freundlich and Langmuir models. The adsorption isotherm data of cGel/PAM 3 aerogel are well fitted using Langmuir model (R2 = 0.99 and 0.981) and adsorption capacity (qmax) 125.0 and 142.0 mg/g for Cr(VI) and Cd(II) ions, respectively. Freundlich model (R2 = 0.989 and 0.986 for Cr(VI) and Cd(II) ions, respectively) has been fitted with the adsorption results. The well-fitting of the Freundlich adsorption isotherm demonstrates the favorable adsorption using this promising aerogel that contains active sites with different energies. The aerogel cGel/PAM 3 was showed the highest adsorption efficiency of 98% using a 1 g/L dose within 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nada AA, Abdellatif FHH, Soliman AAF, Shen J, Hudson SM, Abou-Zeid NY (2019) Fabrication and bioevaluation of a medicated electrospun mat based on azido-cellulose acetate via click chemistry. Cellulose 26(18):9721–9736

    Article  CAS  Google Scholar 

  2. Ahmed HM, Abdellatif MM, Ibrahim S, Abdellatif FHH (2019) Mini-emulsified Copolymer/Silica nanocomposite as effective binder and self-cleaning for textiles coating. Prog Org Coat 129:52–58

    Article  CAS  Google Scholar 

  3. Masaki Y (2016) Characteristics of industrial wastewater discharged from industrialized provinces and specific industrial sectors in china based on the official statistical reports. J Novel Carbon Resour Sci Green Asia Strategy 3(2):59–67

    CAS  Google Scholar 

  4. Abdellatif MM, Ibrahim S, Nomura K (2020) Efficient and eco-friendly low-molecular-weight gelators based on L-phenylalanine as promising remediation tool for oil pollution. J King Saud Univ Sci 32(1):946–951

    Article  Google Scholar 

  5. Ibrahim S, Abdellatif MM (2019) Multilayer flexible packaging materials: relationship between structure and functional properties. Egypt J Chem 62(10):1963–1969

    Google Scholar 

  6. Sarkar B (2002) Heavy metals in the environment, 1st edn. CRC Press

    Book  Google Scholar 

  7. Abdellatif FHH, Babin J, Arnal-Herault C, David L, Jonquieres A (2018) Grafting cellulose acetate with ionic liquids for biofuel purification membranes: influence of the anion. Carbohydr Polym 196:176–186

    Article  Google Scholar 

  8. Abdellatif FHH, Babin J, Arnal-Herault C, Nouvel C, Six JL, Jonquieres A (2017) Bio-based membranes for ethyl tert-butyl ether (ETBE) bio-fuel purification by pervaporation. J Membr Sci 524:449–459

    Article  Google Scholar 

  9. Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water—a comprehensive review. Resour Effic Technol 2(4):175–184

    Article  Google Scholar 

  10. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  CAS  Google Scholar 

  11. Kinuthia GK, Ngure V, Beti D et al (2020) Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Sci Rep 10:8434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abdellatif FHH, Abdellatif MM (2020) Bio-based i-carrageenan aerogels as efficient adsorbents for heavy metal ions and acid dye from aqueous solution. Cellulose 27(1):441–453

    Article  CAS  Google Scholar 

  13. Abdellatif MM, Soliman SMA, El-Sayed NH, Abdellatif FHH (2020) Iota-carrageenan based magnetic aerogels as an efficient adsorbent for heavy metals from aqueous solutions. J Porous Mater 27(1):277–284

    Article  Google Scholar 

  14. Ibrahim NA, Eid BM, Abdellatif FHH (2018) Advanced materials and technologies for antimicrobial finishing of cellulosic textiles. In: Handbook of renewable materials for coloration and finishing. Wiley, pp 303–356

  15. Abdellatif FHH, Babin J, Arnal-Herault C, Jonquieres A (2015) Grafting of cellulose and cellulose derivatives by cuaac click chemistry. In: Cellulose-based graft copolymers: structure and chemistry. CRC Press, pp 568–597

  16. Godiya CB, Cheng X, Li D, Chen Z, Lu X (2019) Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J Hazard Mater 364:28–38

    Article  CAS  PubMed  Google Scholar 

  17. Liu Z, Wang H, Liu C, Jiang Y, Yu G, Mu X, Wang X (2012) Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48(59):7350–7352

    Article  CAS  Google Scholar 

  18. Pourjavadi A, Amini-Fazl MS, Barzegar S (2008) Optimization of synthesis conditions of a novel carrageenan-based superabsorbent hydrogel by Taguchi method and investigation of its metal ions adsorption. J Appl Polym Sci 107(5):2970–2976

    Article  CAS  Google Scholar 

  19. Xia L, Huang Z, Zhong L, Xie F, Tang CY, Tsui CP (2018) Bagasse cellulose grafted with an amino-terminated hyperbranched polymer for the removal of Cr(VI) from aqueous solution. Polymers 10(8):931

    Article  PubMed Central  Google Scholar 

  20. Budtova T, Aguilera DA, Beluns S et al (2020) Biorefinery approach for aerogels. Polymers 12(12):2779

    Article  CAS  PubMed Central  Google Scholar 

  21. Bo S, Ren W, Lei C, Xie Y, Cai Y, Wang S, Gao J, Ni Q, Yao J (2018) Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr(IV) from water. J Solid State Chem 262:135–141

    Article  CAS  Google Scholar 

  22. Li J, Zuo K, Wu W, Xu Z, Yi Y, Jing Y, Dai H, Fang G (2018) Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II). Carbohydr Polym 196:376–384

    Article  CAS  PubMed  Google Scholar 

  23. Guo D, An Q, Xiao Z, Zhai S, Yang D (2018) Efficient removal of Pb(II), Cr(VI) and organic dyes by polydopamine modified chitosan aerogels. Carbohydr Polym 202:306–314

    Article  CAS  PubMed  Google Scholar 

  24. Lei C, Gao J, Ren W, Xie Y, Abdalkarim S, Wang S, Ni Q, Yao J (2019) Fabrication of metal-organic frameworks@cellulose aerogels composite materials for removal of heavy metal ions in water. Carbohydr Polym 205:35–41

    Article  CAS  PubMed  Google Scholar 

  25. Ebisike K, Okoronkwo A, Alaneme K (2019) Adsorption of Cd (II) on chitosan-silica hybrid aerogel from aqueous solution. Environ Technol Innov 14:100337

    Article  Google Scholar 

  26. Guo D, An Q, Xiao Z, Zhai S, Shi Z (2017) Polyethylenimine-functionalized cellulose aerogel beads for efficient dynamic removal of chromium(VI) from aqueous solution. RSC Adv 7(85):54039–54052

    Article  CAS  Google Scholar 

  27. Sabaa MW, Mohamed ME, Abdellatif MM, Soliman SMA (2020) Antibacterial effect of novel grafted gelatin on gram-negative bacteria. Polym Bull 77(1):427–440

    Article  CAS  Google Scholar 

  28. Jiao C, Li T, Wang J, Wang H, Zhang X, Han X, Du Z, Shang Y, Chen Y (2020) Efficient removal of dyes from aqueous solution by a porous sodium alginate/gelatin/graphene oxide triple-network composite aerogel. J Polym Environ 28(5):1492–1502

    Article  CAS  Google Scholar 

  29. Hui B, Zhang Y, Ye L (2015) Structure of PVA/gelatin hydrogel beads and adsorption mechanism for advanced Pb(II) removal. J Ind Eng Chem 21:868–876

    Article  CAS  Google Scholar 

  30. Wang J, Zhao D, Shang K, Wang YT, Ye DD, Kang AH, Liao W, Wang YT (2016) Ultrasoft gelatin aerogels for oil contaminant removal. J Mater Chem A 4(24):9381–9389

    Article  CAS  Google Scholar 

  31. Cui L, Xiong Z, Guo Y, Liu Y, Jincha Z, Zhang C, Zhu P (2015) Fabrication of interpenetrating polymer network chitosan/gelatin porous materials and study on dye adsorption properties. Carbohydr Polym 132:330–337

    Article  CAS  PubMed  Google Scholar 

  32. Dil NN, Sadeghi M (2018) Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu(II) metal ions. J Hazard Mater 351:38–53

    Article  CAS  PubMed  Google Scholar 

  33. Ibrahim S, Voit B (2009) Synthesis and characterization of well-defined block copolymers by combing controlled radical and cationic polymerization. Macromol Symp 275–276(1):59–66

    Article  Google Scholar 

  34. Ahmad K, Nazir MA, Qureshi AK et al (2020) Engineering of Zirconium based metal-organic frameworks (Zr-MOFs) as efficient adsorbents. Mater Sci Eng B 262:114766

    Article  CAS  Google Scholar 

  35. Shah HUR, Ahmad K, Naseem HA et al (2021) Water stable graphene oxide metal-organic frameworks composite (ZIF-67@GO) for efficient removal of malachite green from water. Food Chem Toxicol 154:112312

    Article  Google Scholar 

  36. Ahmad K, Shah HUR, Parveen S et al (2021) Metal Organic Framework (KIUB-MOF-1) as efficient adsorbent for cationic and anionic dyes from brackish water. J Mol Struct 1242:130898

    Article  CAS  Google Scholar 

  37. Khan NA, Najam T, Shah SSA et al (2020) Development of Mn-PBA on GO sheets for adsorptive removal of ciprofloxacin from water: kinetics, isothermal, thermodynamic and mechanistic studies. Mater Chem Phys 245:122737

    Article  CAS  Google Scholar 

  38. Ahmad K, Shah HUR, Ashfaq M et al (2021) Effect of metal atom in zeolitic imidazolate frameworks (ZIF-8 & 67) for removal of Pb2+ & Hg2+ from water. Food Chem Toxicol 149:112008

    Article  CAS  PubMed  Google Scholar 

  39. Ahmad K, Shah HUR, Naseem HA et al (2021) Synthesis and characterization of water stable polymeric metallo organic composite (PMOC) for the removal of arsenic and lead from brackish water. Toxin Rev. https://doi.org/10.1080/15569543.2021.1919902

    Article  Google Scholar 

  40. Ayub A, Irfan A, Raza ZA et al (2021) Development of poly(1-vinylimidazole)-chitosan composite sorbent under microwave irradiation for enhanced uptake of Cd(II) ions from aqueous media. Polym Bull. https://doi.org/10.1007/s00289-020-03523-7

    Article  Google Scholar 

  41. Adams CI, Spaulding GH (1955) Determination of organic nitrogen by Kjeldahl method without distillation. Anal Chem 27(6):1003–1004

    Article  CAS  Google Scholar 

  42. Liang C et al (2018) ZIF-67 derived hollow cobalt sulfide as superior adsorbent for effective adsorption removal of ciprofloxacin antibiotics. Chem Eng J 344:95–104

    Article  CAS  Google Scholar 

  43. Khan NA, Najam T, Shah SSA et al (2020) Development of Mn-PBA on GO sheets for adsorptive removal of ciprofloxacin from water: kinetics, isothermal, thermodynamic and mechanistic studies. Mater Chem Phys 245:122737

    Article  CAS  Google Scholar 

  44. Lata S, Singh PK, Samadder SR (2015) Regeneration of adsorbents and recovery of heavy metals: a review. Int J Environ Sci Technol 12:1461–1478

    Article  CAS  Google Scholar 

  45. Tseng JY, Chang CY, Chang CF et al (2009) Kinetics and equilibrium of desorption removal of copper from magnetic polymer adsorbent. J Hazard Mater 171:370–377

    Article  CAS  PubMed  Google Scholar 

  46. Yingnakhon W, Srikulkit K (2013) A simple quaternization method of hyperbranched polyamidoamine polymer and antimicrobial activity evaluation of cationic hyperbranched polyamidoamine polymer. Asian J Chem 25(7):4009–4012

    Article  CAS  Google Scholar 

  47. Nagura M, Yokota H, Ikeura M, Gotoh Y, Ohkoshi Y (2002) Structures and physical properties of cross-linked gelatin fibers. Polym J 34(10):761–766

    Article  CAS  Google Scholar 

  48. Cui Z, Beach ES, Anastas PT (2011) Modification of chitosan films with environmentally benign reagents for increased water resistance. Green Chem Lett Rev 4(1):35–40

    Article  CAS  Google Scholar 

  49. Yang Y, Wang L, Li S (1996) Formaldehyde-free zein fiber-preparation and investigation. J Appl Polym Sci 59(3):433–441

    Article  CAS  Google Scholar 

  50. Uranga J, Nguyen BT, Si TT, Guerrero P, de la Caba K (2020) The effect of cross-linking with citric acid on the properties of agar/fish gelatin films. Polymers 12(2):291

    Article  CAS  PubMed Central  Google Scholar 

  51. Gregg SJ, Wing KSW, Salzberg HW (1967) Adsorption surface area and porosity. J Electrochem Soc 114:279C

    Article  Google Scholar 

  52. Tan YH, Davis JA, Fujikawa K et al (2012) Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. J Mater Chem 22(14):6733–6745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319

    Article  CAS  Google Scholar 

  54. Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64(10):1782–1806

    Article  CAS  Google Scholar 

  55. Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36(2):155–163

    Article  CAS  PubMed  Google Scholar 

  56. Joseph P (2009) Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol 238(3):272–279

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Mehawed Abdellatif or Faten Hassan Hassan Abdellatif.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellatif, M.M., Abdellatif, F.H.H. & Ibrahim, S. The utilization of cross-linked gelatin/PAMAM aerogels as heavy metal ions bio-adsorbents from aqueous solutions. Polym. Bull. 79, 10931–10948 (2022). https://doi.org/10.1007/s00289-021-04019-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04019-8

Keywords

Navigation