Skip to main content
Log in

The effect of end group and graphene on dielectric properties and thermal degradation of poly(benzyl methacrylate) prepared by ATRP method

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The polymer composites were prepared based on the incorporation of graphene particles in various ratios to lacton ended poly(benzyl methacrylate) (LE-PBMA). The thermal caharacterization of composites was performed by DSC and TGA techniques. The dielectric constant (ε′), the dielectric loss factor (ε″) and the ac and dc conductivities (σac and σdc) were measured using an impedance analyzer in a frequency range from 100 to 2 kHz. The thermal degradation up to 500 °C under vacuum of LE-PBMA loaded with 12 w% graphene was investigated. Thermal degradation was carried out to known if the addition of graphene causes any changes in the degradation processes of LE-PBMA/graphene 12 w%, and it was compared to that of pure LE-PBMA prepared by ATRP (atom transfer radical polymerization) method. When compared with those of PBMA prepared by free radical polymerization, the trend of depolymerization for LE-PBMA in the presence of graphene in the composite system decreased from 78% (by mol) up to 37% (by mol). The FT-IR, 1H- 13C-NMR and GC–MS data showed that depolymerization corresponding to monomer (benzyl methacrylate) was the most important product trapped at CRF (cold ring fraction) in the thermal degradation of composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Fig. 11
Fig. 12
Scheme 2
Fig. 13
Fig. 14
Scheme 3
Fig. 15
Fig. 16
Scheme 4

Similar content being viewed by others

References

  1. Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32(4):314–322. https://doi.org/10.1557/mrs2007.229

    Article  CAS  Google Scholar 

  2. A.Geim, K. Novoselov (2010), The rise of graphene, nanoscience and technology:a collection of reviews from nature journals, World Sci, 11–19. https://doi.org/10.1142/9789814287005_0002.

  3. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286. https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  4. Chiu F-C, Chen Y-J (2015) Evaluation of thermal, mechanical, and electrical properties of PVDF/GNP binary and PVDF/PMMA/GNP ternary nanocomposites. Compos A Appl Sci Manuf 68:62–71. https://doi.org/10.1016/j.compositesa.2014.09.019

    Article  CAS  Google Scholar 

  5. Yu S, Li N, Higgins D, Li D, Li Q, Xu H, Spendelow JS, Wu G (2014) Self-assembled reduced graphene oxide/polyacrylamide conductive composite films. ACS Appl Mater Interfaces 6(22):19783–19790. https://doi.org/10.1021/am504941p

    Article  CAS  Google Scholar 

  6. Zhang H-B, Zheng W-G, Yan Q, Yang Y, Wang J-W, Lu Z-H, Ji G-Y, Yu Z-Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196. https://doi.org/10.1016/J.Polymer.2010.01.027

    Article  CAS  Google Scholar 

  7. Wang Z, Han NM, Wu Y, Liu X, Shen X, Zheng Q, Kim J-K (2017) Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly (vinyl alcohol) composites with insulating barriers. Carbon 123:385–394. https://doi.org/10.1016/j.carbon.2017.07.079

    Article  CAS  Google Scholar 

  8. Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3):922–925. https://doi.org/10.1016/j.-carbon.2008.12.038

    Article  CAS  Google Scholar 

  9. Pandey JK, Reddy KR, Kumar AP, Singh R (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88(2):234–250. https://doi.org/10.1016/j.polymdegradstab.2004.09.013

    Article  CAS  Google Scholar 

  10. P.M. Visakh and O.B. Nazarenko, Thermal degradation of polymer blends, composites and nanocomposites, Thermal Degradation of Polymer Blends, Composites and Nanocomposites, Springer2015, pp. 1–16. DOI https://doi.org/10.1007/978-3-319-03464-5_1.

  11. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35(7):837–867. https://doi.org/10.1016/j.progpolymsci.2010.03.002

    Article  CAS  Google Scholar 

  12. Peterson JD, Vyazovkin S, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Physic 202(6):775–784

    Article  CAS  Google Scholar 

  13. Demirelli K, Coskun M, Kaya E (2004) Polymers based on benzyl methacrylate: Synthesis via atom transfer radical polymerization, characterization, and thermal stabilities. J Polym Sci, Part A: Polym Chem 42(23):5964–5973. https://doi.org/10.1002/pola.20447

    Article  CAS  Google Scholar 

  14. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530. https://doi.org/10.1021/ma100572e

    Article  CAS  Google Scholar 

  15. Chrissafis K, Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta 523(1–2):1–24. https://doi.org/10.1016/j.tca.2011.06.010

    Article  CAS  Google Scholar 

  16. Vassiliou A, Chrissafis K, Bikiaris D (2010) Thermal degradation kinetics of in situ prepared PET nanocomposites with acid-treated multi-walled carbon nanotubes. J Therm Anal Calorim 100(3):1063–1071. https://doi.org/10.1007/s10973-009-0426-4

    Article  CAS  Google Scholar 

  17. Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ, Bikiaris DN (2008) Thermal and dynamic mechanical behavior of bionanocomposites: fumed silica nanoparticles dispersed in poly (vinyl pyrrolidone), chitosan, and poly (vinyl alcohol). J Appl Polym Sci 110(3):1739–1749. https://doi.org/10.1002/app.28818

    Article  CAS  Google Scholar 

  18. Mandal DK, Bhunia H, Bajpai PK (2019) Thermal degradation kinetics of PP/PLA nanocomposite blends. J Thermoplast Compos Mater 32(12):1714–1730. https://doi.org/10.1177/0892705718805130

    Article  CAS  Google Scholar 

  19. Xie W, Gao Z, Pan W-P, Hunter D, Singh A, Vaia R (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater 13(9):2979–2990

    Article  CAS  Google Scholar 

  20. Qin H, Zhang Z, Feng M, Gong F, Zhang S, Yang M (2004) The influence of interlayer cations on the photo-oxidative degradation of polyethylene/montmorillonite composites. J Polym Sci, Part B: Polym Phys 42(16):3006–3012. https://doi.org/10.1002/polb.20068

    Article  CAS  Google Scholar 

  21. Wang S, Ouyang X, Feng Z, Cao Y, Gu M, Li X (2018) [Opto-Electron Adv, 2018, 1 (2)] Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electronic Rep 2(03):a201902002. https://doi.org/10.29026/oea.2018.170002

    Article  Google Scholar 

  22. Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules 43(5):2357–2363

    Article  CAS  Google Scholar 

  23. Ramesh S, Ang G (2010) Impedance and FTIR studies on plasticized PMMA–LiN (CF 3 SO 2) 2 nanocomposite polymer electrolytes. Ionics 16(5):465–473. https://doi.org/10.1007/s11581-009-0417-2

    Article  CAS  Google Scholar 

  24. Gajula GR, Kumar KC, Buddiga LR, Nethala GP (2018) Dielectric and impedance properties of Li0.5Fe2,5SO4 doped BaTiO3 composite ceramics. Results Phys 11:899–904. https://doi.org/10.1016/j.rinp.2018.10.057

    Article  Google Scholar 

  25. Reddy TG, Kumar BR, Rao TS, Ahmad JA (2011) Structural and dielectric properties of barium bismuth titanate (BaBi4Ti4O15) ceramics. Int J Appl Eng Res 6(5):571–580

    Google Scholar 

  26. Upadhyay S, Sahu AK, Kumar D, Parkash O (1998) Probing electrical conduction behavior of BaSnO3. J Appl Phys 84(2):828–832. https://doi.org/10.1063/1.368143

    Article  CAS  Google Scholar 

  27. Prasad K, Suman CK, Choudhary RNP (2006) Electrical characterisation of Pb2Bi3SmTi5O18 ceramic using impedance spectroscopy. Adv Appl Ceram 105(5):258–264. https://doi.org/10.1179/174367606X115940

    Article  CAS  Google Scholar 

  28. E. Pretsch, T. Clerc, J. Seibl, W. Simon, Tables of spectral data for structure determination of organic compounds, Springer Science & Business Media 2013.

  29. Lin S-Y, Cheng W-T, Wei Y-S, Lin H-L (2011) DSC-FTIR microspectroscopy used to investigate the heat-induced intramolecular cyclic anhydride formation between Eudragit E and PVA copolymer. Polym J 43(6):577–580. https://doi.org/10.1038/pj.2011.15

    Article  CAS  Google Scholar 

  30. Demirelli K, Coşkun M, Kaya E (2001) A detailed study of thermal degradation of poly(2-hydroxyethyl methacrylate). Polym Degrad Stab 72(1):75–80. https://doi.org/10.1016/S0141-3910(00)00204-4

    Article  CAS  Google Scholar 

  31. Ho BC, Lee YD, Chin WK (1992) Thermal degradation of polymethacrylic acid. J Polym Sci, Part A: Polym Chem 30(11):2389–2397. https://doi.org/10.1002/pola.1992.080301113

    Article  CAS  Google Scholar 

  32. Coşkun MF, Demirelli K, Coşkun M, Doǧru M (2002) Thermal decomposition of poly[3-phthalimido-2-hydroxypropyl methacrylate]. Polym Degrad Stab 76(1):145–154. https://doi.org/10.1016/S0141-3910(02)00008-3

    Article  Google Scholar 

  33. McNeill IC, Ahmed S, Memetea L (1995) Thermal degradation of vinyl acetate–methacrylic acid copolymer and homopolymers. I. An FTIR spectroscopic investigation of structural changes in the degrading material. Polym Degrad Stab 47(3):423–433. https://doi.org/10.1016/0141-3910(95)00001-1

    Article  CAS  Google Scholar 

  34. McNeill IC, Liggat JJ (1992) Thermal degradation of styrene-methacrylic acid copolymers. Polym Degrad Stab 36(3):291–299. https://doi.org/10.1016/0141-3910(92)90069-H

    Article  CAS  Google Scholar 

  35. Manring LE (1991) Thermal degradation of poly(methyl methacrylate). 4. Random side-group scission. Macromolecules 24(11):3304–3309. https://doi.org/10.1021/ma00011a040

    Article  CAS  Google Scholar 

  36. Demirelli K, Kaya E, Coşkun M (2006) Polymers based on phenyl methacrylate: synthesis via atom transfer radical polymerization, characterization, monomer reactivity ratios, and thermal stabilities. Polym Eng Sci 50(2):268–277. https://doi.org/10.1002/app.22694

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to the Firat University Research Fund for financial support to this Project (FUBAP, FF.19.25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Demirelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirelli, K., Abubakar, A.M., Ahmad, A.A. et al. The effect of end group and graphene on dielectric properties and thermal degradation of poly(benzyl methacrylate) prepared by ATRP method. Polym. Bull. 80, 279–307 (2023). https://doi.org/10.1007/s00289-021-04003-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04003-2

Keywords

Navigation