Skip to main content

Advertisement

Log in

Review on adsorptive removal of metal ions and dyes from wastewater using tamarind-based bio-composites

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Large-scale industrialization and urbanization have led to such an alarming level of water contamination throughout the world that wastewater management has become one of the major global challenges attracting much research attention in recent times. Various techniques have been adopted for the treatment of polluted water among which adsorption has been preferred on a larger scale by virtue of its ease and cost-effective nature. This review highlights the efficiency of tamarind-based nanocomposites as potential adsorbents for a varying range of harmful organic and inorganic water pollutants including metal ions, fluoride ions and numerous kinds of dyes. A comprehensive analysis of fabrication routes, adsorption isotherms, kinetic and thermodynamic modeling as well as the adsorption mechanism and recyclability of these adsorbents is being presented in this work. In addition, various factors affecting the adsorption behavior such as pH, amount of adsorbent, concentration of ion/dye and influence of contact time are being elaborately outlined. The comparison of different composites on the basis of their effectiveness, selectivity, economic and environmental aspects has also been outlined. Moreover, a brief comparison of tamarind-based nanocomposites with other nanomaterials has also been included with respect to their efficiency in removal of water pollutants. Based on the data collected from a good number of literatures being surveyed, a great scope of future research on tamarind-based nanocomposites as alternative low-cost biomaterials in the field of water purification can be perceived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yao T, Cui T, Wu J, Chen Q, Lu S, Sun K (2011) Preparation of hierarchical porous polypyrrole nanoclusters and their application for removal of Cr (VI) ions in aqueous solution. Polym Chem 2:2893–2899. https://doi.org/10.1021/acsomega.8b00092

    Article  CAS  Google Scholar 

  2. Awual MR, Urata S, Jyo A, Tamada M, Katakai A (2008) Arsenate removal from water by a weak-base anion exchange fibrous adsorbent. Water Res 42:689–696. https://doi.org/10.1016/j.watres.2007.08.020

    Article  CAS  PubMed  Google Scholar 

  3. Kabdasli I, Tunay O, Orhon D (1996) Wastewater control and management in a leather tanning district. Water Sci Technol 40:261–267. https://doi.org/10.1016/S0273-1223(99)00393-5

    Article  Google Scholar 

  4. Ivanov K, Gruber E, Schempp W, Kirov D (1996) Possibilities of using zeolite as filler and carrier for dyestuffs in paper. Papier 50:456

    CAS  Google Scholar 

  5. Bensalah N, Alfaro M, Martínez-Huitle C (2009) Electrochemical treatment of synthetic wastewaters containing Alphazurine A dye. Chem Eng J 149:348–352. https://doi.org/10.1016/j.cej.2008.11.031

    Article  CAS  Google Scholar 

  6. Wrobel D, Boguta A, Ion RM (2001) Mixtures of synthetic organic dyes in a photoelectrochemical cell. J Photochem Photobiol A Chem 138:7–22. https://doi.org/10.1016/S1010-6030(00)00377-4

    Article  CAS  Google Scholar 

  7. Dawood S, Sen TK, Phan C (2014) Synthesis and characterisation of novel-activated carbon from waste biomass pine cone and its application in the removal of Congo red dye from aqueous solution by adsorption. Water Air Soil Pollut 225:1–16. https://doi.org/10.1007/s11270-013-1818-4

    Article  CAS  Google Scholar 

  8. Mohammed IA, Jawad AH, Abdulhameed AS, Mastuli MS (2020) Physicochemical modification of chitosan with fly ash and tripolyphosphate for removal of reactive red 120 dye: Statistical optimization and mechanism study. Int J Biol Macromol 161:503–513. https://doi.org/10.1016/j.ijbiomac.2020.06.069

    Article  CAS  PubMed  Google Scholar 

  9. Bulgariu L, Escudero LB, Bello OS, Iqbal M, Nisar J, Adegoke KA, Alakhras F, Kornaros M, Anastopoulos I (2019) The utilization of leaf-based adsorbents for dyes removal: A review. J Mol Liq 276:728–747. https://doi.org/10.1016/j.molliq.2018.12.001

    Article  CAS  Google Scholar 

  10. Ahmad MZ, Bhatti IA, Qureshi K, Ahmad N, Nisar J, Zuber M, Ashar A, Khan MI, Iqbal M (2020) Graphene oxide supported Fe2(MoO4)3 nano rods assembled round-ball fabrication via hydrothermal route and photocatalytic degradation of nonsteroidal anti-inflammatory drugs. J Mol Liq 301:112343. https://doi.org/10.1016/j.molliq.2019.112343

    Article  CAS  Google Scholar 

  11. Hassan MM, Carr CM (2018) A critical review on recent advancements of the removal of reactive dyes from dye house effluent by ion-exchange adsorbents. Chemosphere 209:201–219. https://doi.org/10.1016/j.chemosphere.2018.06.043

    Article  CAS  PubMed  Google Scholar 

  12. Zhao G, Jiang L, He Y, Li J, Dong H, Wang X, Hu W (2011) Sulfonated graphene for persistent aromatic pollutant management. Adv Mater 23:3959–3963. https://doi.org/10.1002/adma.201101007

    Article  CAS  PubMed  Google Scholar 

  13. Jawad AH, Mohammed IA, Abdulhameed AS (2020) Tuning of fly ash loading into chitosan-ethylene glycol diglycidyl ether composite for Enhanced removal of reactive red 120 dye: Optimization using the box-behnken design. J Polym Environ 28:2720–2733. https://doi.org/10.1007/s10924-020-01804-w

    Article  CAS  Google Scholar 

  14. Robinson T, Chandran B, Nigam P (2002) Studies on desorption of individual textile dyes and a synthetic dye effluent from dye-adsorbed agricultural residues using solvents. Bioresour Technol 84:299–301. https://doi.org/10.1016/S0960-8524(02)00039-1

    Article  CAS  PubMed  Google Scholar 

  15. Saya L, Gautam D, Malik V, Singh WR, Hooda S (2020) Natural polysaccharide based graphene oxide nanocomposites for removal of dyes from wastewater: a review. J Chem Eng Data. https://doi.org/10.1021/acs.jced.0c00743

    Article  Google Scholar 

  16. Saha N, Rahman MS, Ahmed MB, Zhou JL, Ngo HH, Guo W (2017) Industrial metal pollution in water and probabilistic assessment of human health risk. J Environ Manage 185:70–78. https://doi.org/10.1016/j.jenvman.2016.10.023

    Article  CAS  PubMed  Google Scholar 

  17. Gautam D, Saya L, Hooda S (2020) Fe3 O4 loaded chitin–A promising nano adsorbent for Reactive Blue 13 dye. Adv Environ 2:100014. https://doi.org/10.1016/j.envadv.2020.100014

    Article  Google Scholar 

  18. Standard DI (2019) Bureau of Indian Standards 10500:2–4

  19. World Health Organization (WHO) (2008) Guideline for drinking water quality 375–377

  20. DenBesten P, Li W (2011) Chronic fluoride toxicity: dental fluorosis. Fluoride Oral Environ 22:81–96. https://doi.org/10.1159/000327028

    Article  Google Scholar 

  21. Siddiqui AH (1955) Fluorosis in Nalgonda district. Hyderabad-Deccan. Br Med J 2:1408

    Article  CAS  Google Scholar 

  22. Jolly SS, Prasad S, Sharma R, Chander R (1973) Endemic fluorzosis in Punjab. I Skeletal Aspect Fluoride 6:4–18

    CAS  Google Scholar 

  23. Teotia SPS, Teotia M (1991) Endemic fluoride: bones and teeth—update. Ind J Environ Toxicol 1:1–16

    Google Scholar 

  24. Susheela AK, Kumar A, Bhatnagar M, Bahadur R (1993) Prevalence of endemic fluorosis with gastrointestinal manifestations in people living in some north-Indian villages. Fluoride 26:97–104

    Google Scholar 

  25. Karthikeyan G, Pius A, Apparao BV (1996) Contribution of fluoride in water and food to the prevalence of fluorosis in areas of Tamil Nadu in South India. Fluoride 29:151–155

    CAS  Google Scholar 

  26. Emam HE, Saad NM, Abdallah AEM, Ahmed HB (2020) Acacia gum versus pectin in fabrication of catalytically active palladium nanoparticles for dye discoloration. Int J Biol Macromol 156:829–840. https://doi.org/10.1016/j.ijbiomac.2020.04.018

    Article  CAS  PubMed  Google Scholar 

  27. Emam HE, Ahmed HB (2019) Comparative study between homo-metallic & hetero-metallic nanostructures based agar in catalytic degradation of dyes. Int J Biol Macromol 138:450–461. https://doi.org/10.1016/j.ijbiomac.2019.07.098

    Article  CAS  PubMed  Google Scholar 

  28. Emam HE, Ahmed HB, Gomaa E et al (2020) Recyclable photocatalyst composites based on Ag3VO4 and Ag2WO4 @MOF@cotton for effective discoloration of dye in visible light. Cellulose 27:7139–7155. https://doi.org/10.1007/s10570-020-03282-8

    Article  CAS  Google Scholar 

  29. Ahmed HB, Mikhail MM, El-Sherbiny S et al (2020) pH responsive intelligent nano-engineer of nanostructures applicable for discoloration of reactive dyes. J Colloid Interface Sci 561:147–161. https://doi.org/10.1016/j.jcis.2019.11.060

    Article  CAS  PubMed  Google Scholar 

  30. Abdelhameed RM, El-Shahat M, Emam HE (2020) Employable metal (Ag & Pd)@MIL-125-NH2@cellulose acetate film for visible-light driven photocatalysis for reduction of nitro-aromatics. Carbohydr Polym 247:116695. https://doi.org/10.1016/j.carbpol.2020.116695

    Article  CAS  PubMed  Google Scholar 

  31. Emam HE, El-Shahat M, Abdelhameed RM (2021) Observable removal of pharmaceutical residues by highly porous photoactive cellulose acetate@MIL-MOF film. J Hazard Mater 414:125509. https://doi.org/10.1016/j.jhazmat.2021.125509

    Article  CAS  PubMed  Google Scholar 

  32. Ahmed HB, Emam HE (2019) Synergistic catalysis of monometallic (Ag, Au, Pd) and bimetallic (Ag[sbnd]Au, Au[sbnd]Pd) versus trimetallic (Ag-Au-Pd) nanostructures effloresced via analogical techniques. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.110975

    Article  Google Scholar 

  33. Jawad AH, Alkarkhi AFM, Mubarak NSA (2015) Photocatalytic decolorization of methylene blue by an immobilized TiO2 film under visible light irradiation: optimization using response surface methodology (RSM). Desalin Water Treat 56:161–172. https://doi.org/10.1080/19443994.2014.934736

    Article  CAS  Google Scholar 

  34. Jawad AH, Mubarak NSA, Ishak MAM et al (2016) Kinetics of photocatalytic decolourization of cationic dye using porous TiO2 film. J Taibah Univ Sci 10:352–362. https://doi.org/10.1016/j.jtusci.2015.03.007

    Article  Google Scholar 

  35. Gautam D, Hooda S (2020) Magnetic graphene oxide/chitin nanocomposites for efficient adsorption of methylene blue and crystal violet from aqueous solutions. J Chem Eng Data 65:4052–4062. https://doi.org/10.1021/acs.jced.0c00350

    Article  CAS  Google Scholar 

  36. Gautam D, Lal S, Hooda S (2020) Adsorption of rhodamine 6G dye on binary system of nanoarchitectonics composite magnetic graphene oxide material. J Nanosci Nanotechnol 20(2020):2939–2945. https://doi.org/10.1166/jnn.2020.17442

    Article  CAS  PubMed  Google Scholar 

  37. Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC (2014) Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J Eviron Chem Eng 2:239–259. https://doi.org/10.1016/j.jece.2013.12.019

    Article  CAS  Google Scholar 

  38. Jawad AH, Mubarak NSA, Abdulhameed AS (2020) Hybrid crosslinked chitosan-epichlorohydrin/TiO2 nanocomposite for reactive red 120 dye adsorption: Kinetic, isotherm, thermodynamic, and mechanism study. J Polym Environ 28:624–637. https://doi.org/10.1007/s10924-019-01631-8

    Article  CAS  Google Scholar 

  39. Jawad AH, Malek NNA, Abdulhameed AS, Razuan R (2020) Synthesis of magnetic chitosan-fly Ash/Fe3O4 composite for adsorption of reactive orange 16 dye: Optimization by Box-Behnken design. J Polym Environ 28:1068–1082. https://doi.org/10.1007/s10924-020-01669-z

    Article  CAS  Google Scholar 

  40. Jawad AH, Abdulhameed AS, Reghioua A, Yaseen ZM (2020) Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes. Int J Biol Macromol 163:756–765. https://doi.org/10.1016/j.ijbiomac.2020.07.014

    Article  CAS  PubMed  Google Scholar 

  41. Abdulhameed AS, Mohammad AKT, Jawad AH (2019) Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. J Clean Prod 232:43–56. https://doi.org/10.1016/j.jclepro.2019.05.291

    Article  CAS  Google Scholar 

  42. Jawad AH, Abdulhameed AS (2020) Facile synthesis of crosslinked chitosan-tripolyphosphate/kaolin clay composite for decolourization and COD reduction of remazol brilliant blue R dye: Optimization by using response surface methodology. Colloids Surf A Physicochem Eng Asp 605:125329. https://doi.org/10.1016/j.colsurfa.2020.125329

    Article  CAS  Google Scholar 

  43. Malek NNA, Jawad AH, Abdulhameed AS et al (2020) New magnetic Schiff’s base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: An optimized process. Int J Biol Macromol 146:530–539. https://doi.org/10.1016/j.ijbiomac.2020.01.020

    Article  CAS  PubMed  Google Scholar 

  44. Mohammad AKT, Abdulhameed AS, Jawad AH (2019) Box-Behnken design to optimize the synthesis of new crosslinked chitosan-glyoxal/TiO2 nanocomposite: Methyl orange adsorption and mechanism studies. Int J Biol Macromol 129:98–109. https://doi.org/10.1016/j.ijbiomac.2019.02.025

    Article  CAS  PubMed  Google Scholar 

  45. Reghioua A, Barkat D, Jawad AH et al (2021) Magnetic chitosan-glutaraldehyde/zinc oxide/Fe3O4 nanocomposite: Optimization and adsorptive mechanism of remazol brilliant blue R dye removal. J Polym Environ. https://doi.org/10.1007/s10924-021-02160-z

    Article  Google Scholar 

  46. Abdulhameed AS, Jawad AH, Mohammad AKT (2019) Synthesis of chitosan-ethylene glycol diglycidyl ether/TiO2 nanoparticles for adsorption of reactive orange 16 dye using a response surface methodology approach. Bioresour Technol 293:122071. https://doi.org/10.1016/j.biortech.2019.122071

    Article  CAS  PubMed  Google Scholar 

  47. Reghioua A, Barkat D, Jawad AH et al (2021) Parametric optimization by Box-Behnken design for synthesis of magnetic chitosan-benzil/ZnO/Fe3O4 nanocomposite and textile dye removal. J Environ Chem Eng 9:105166. https://doi.org/10.1016/j.jece.2021.105166

    Article  CAS  Google Scholar 

  48. Reghioua A, Barkat D, Jawad AH et al (2021) Synthesis of Schiff’s base magnetic crosslinked chitosan-glyoxal/ZnO/Fe3O4 nanoparticles for enhanced adsorption of organic dye: Modeling and mechanism study. Sustain Chem Pharm 20:100379. https://doi.org/10.1016/j.scp.2021.100379

    Article  CAS  Google Scholar 

  49. Jawad A (2020) The study of commercial titanium dioxide (TiO2) degussa P25 for the adsorption of acidic dye. Sci Lett 14:68–83

    Google Scholar 

  50. Abdelhameed RM, Abdel-Gawad H, Emam HE (2021) Macroporous Cu-MOF@cellulose acetate membrane serviceable in selective removal of dimethoate pesticide from wastewater. J Environ Chem Eng 9:105121. https://doi.org/10.1016/j.jece.2021.105121

    Article  CAS  Google Scholar 

  51. Kyzas GZ, Lazaridis NK, Kostoglou M (2012) Modelling the effect of pre-swelling on adsorption dynamics of dyes by chitosan derivatives. Chem Eng Sci 81:220230

    Article  Google Scholar 

  52. Rahmi I, Mustafa I (2019) Methylene blue removal from water using H2SO4 crosslinked magnetic chitosan nanocomposite beads. Microchem J 144:397402. https://doi.org/10.1016/j.microc.2018.09.032

    Article  CAS  Google Scholar 

  53. Jawad AH, Abdulhameed AS, Mastuli MS (2020) Mesoporous crosslinked chitosan-activated charcoal composite for the removal of thionine cationic dye: Comprehensive adsorption and mechanism study. J Polym Environ 28:1095–1105. https://doi.org/10.1007/s10924-020-01671-5

    Article  CAS  Google Scholar 

  54. Jawad AH, Mubarak NSA, Abdulhameed AS (2020) Tunable Schiff’s base-cross-linked chitosan composite for the removal of reactive red 120 dye: Adsorption and mechanism study. Int J Biol Macromol 142:732–741. https://doi.org/10.1016/j.ijbiomac.2019.10.014

    Article  CAS  PubMed  Google Scholar 

  55. Ho S (2020) Removal of dyes from wastewater by adsorption onto activated carbon: Mini Review. J Geosci Environ Protect 8:120–131. http://www.scirp.org/journal/Paperabs.aspx?PaperID=100280.

  56. Hasanzadeh M, Simchi A, Far HS (2020) Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: Synthesis, adsorption mechanism and kinetics studies. J Ind Eng Chem 81:405–414. https://doi.org/10.1016/j.jiec.2019.09.031

    Article  CAS  Google Scholar 

  57. Zhao G, Zhang H, Fan Q, Ren X, Li J, Chen Y, Wang X (2010) Sorption of copper(II) onto super-adsorbent ofbentonite-polyacrylamide composites. J Hazard Mater 173:661–668. https://doi.org/10.1016/j.jhazmat.2009.08.135

    Article  CAS  PubMed  Google Scholar 

  58. Jawad AH, Abdulhameed AS, Malek NNA, ALOthman ZA (2020) Statistical optimization and modeling for color removal and COD reduction of reactive blue 19 dye by mesoporous chitosan-epichlorohydrin/kaolin clay composite. Int J Biol Macromol 164:4218–4230. https://doi.org/10.1016/j.ijbiomac.2020.08.201

    Article  CAS  PubMed  Google Scholar 

  59. Jawad AH, Abdulhameed AS, Kashi E et al (2021) Cross-linked chitosan-glyoxal/kaolin clay composite: parametric optimization for color removal and COD reduction of remazol brilliant blue R dye. J Polym Environ. https://doi.org/10.1007/s10924-021-02188-1

    Article  Google Scholar 

  60. Mittal H, Babu R, Dabbawala AA, Stephen S, Alhassan SM (2020) Zeolite-Y incorporated karaya gum hydrogel composites for highly effective removal of cationic dyes. Colloids Surf A 586:124161. https://doi.org/10.1016/j.colsurfa.2019.124161

    Article  CAS  Google Scholar 

  61. Emam HE, Darwesh OM, Abdelhameed RM (2020) Protective cotton textiles via amalgamation of cross-linked zeolitic imidazole frameworks. Ind Eng Chem Res 59:10931–10944. https://doi.org/10.1021/acs.iecr.0c01384

    Article  CAS  Google Scholar 

  62. Li Z, Sellaoui L, Franco D, Nettoc MS, Georgin J, Dotto GL, Bajahzard A, Belmabrouk H, Petriciolet AB, Li Q (2020) Adsorption of hazardous dyes on functionalized multiwalledcarbonnanotubes in single and binary systems: Experimental study andphysicochemical interpretation of the adsorption mechanism. Chem Eng J 389:124467. https://doi.org/10.1016/j.cej.2020.124467

    Article  CAS  Google Scholar 

  63. Zhang W, Yang Q, Luo Q, Shi L, Meng S (2020) Laccase-Carbon nanotube nanocomposites for enhancing dyes removal. J Clean Prod 242:118425. https://doi.org/10.1016/j.jclepro.2019.118425

    Article  CAS  Google Scholar 

  64. Huang Y, Li J, Chen X, Wang X (2014) Applications of conjugated polymer based composites in wastewater purification. RSC Adv 4:62160–62178. https://doi.org/10.1039/C4RA11496E

    Article  CAS  Google Scholar 

  65. Mostafa KM, Samarkandy AR, El-Sanabary AA (2009) Preparation of poly (MAA)- crosslinked pregelled starch graft copolymer and its application in waste water treatments. J Appl Polym Sci 112(5):2838–2846. https://doi.org/10.1002/app.29753

    Article  CAS  Google Scholar 

  66. Mostafa KM, Samarkandy AR, El-Sanabary AA (2010) Removal of basic dyes from aqueous medium using novel poly (MAA) -cross linked pregelled starch graft copolymer. J Appl Polym Sci 118(5):2728–2735. https://doi.org/10.1002/app.32666

    Article  CAS  Google Scholar 

  67. Sullivan EM, Oh YJ, Gerhardt RA et al (2014) Understanding the effect of polymer crystallinity on the electrical conductivity of exfoliated graphite nanoplatelet/polylactic acid composite films. J Polym Res 21:1–9. https://doi.org/10.1007/s10965-014-0563-8

    Article  CAS  Google Scholar 

  68. Mostafa KM, Samarkandy AR, El-Sanabary AA (2011) Preparation of poly (DMAEM)-cross linked pregelled starch graft copolymer and its application in waste water treatments. Carbohydr Polym 86:491–498. https://doi.org/10.1016/j.carbpol.2011.04.074

    Article  CAS  Google Scholar 

  69. Mostafa KM, El-Sanabary AA (2013) Synthesis and characterization of novel smart flocculent based on poly (MAam) – pregelled starch graft copolymers and their degraded products. Adv Polym Technol 32(2):21339

    Article  Google Scholar 

  70. Mostafa KM, Osman E, Mahmoud RI, El-Sanabary AA (2018) Towards synthesis, characterization and properties of smart material based on chitosan using Mn-IV itaconic acid as a novel redox pair. J Polym Environ 26:3250–3261. https://doi.org/10.1007/s10924-018-1209-4

    Article  CAS  Google Scholar 

  71. Cafer S, Omer S, Mehmet MK (2012) Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters. Int J Environ Sci Technol 9:379

    Article  Google Scholar 

  72. Gupta V, Puri R, Gupta S, Jain S, Gk R (2010) Tamarind kernel gum: An upcoming natural polysaccharide. Sys Rev Pharm 1:50–54

    Article  CAS  Google Scholar 

  73. Khanna MN, Sarin RC (1987) standardization of tamarind seed polysaccharide for pharmaceutical use. Indian Drugs 24:268–269

    CAS  Google Scholar 

  74. Mali KK, Dhawale SC, Dias RJ, Ghorpade VS (2019) Delivery of drugs using tamarind gum and modified tamarind gum: A review. Bull Faculty Pharm, Cairo Univ 57:1–24

    Article  Google Scholar 

  75. Warkar SG, Kumar A (2019) Synthesis and assessment of carboxymethyl tamarind kernel gum based novel superabsorbent hydrogels for agricultural applications. Polymer 182:121823. https://doi.org/10.1016/j.polymer.2019.121823

    Article  CAS  Google Scholar 

  76. Kumar S, Majhi RK, Sanyasi S, Goswami C, Goswami L (2018) Acrylic acid grafted tamarind kernel polysaccharide-based hydrogel for bone tissue engineering in absence of any osteo-inducing factors. Connect Tissue Res 59:111–121. https://doi.org/10.1080/03008207.2018.1442444

    Article  CAS  PubMed  Google Scholar 

  77. Bagula M, Arya SS (1998) Tamarind seeds: chemistry, technology, applications and health benefits: A review. Seed 70:75

    Google Scholar 

  78. Dash S, Chaudhuri H, Gupta R, Nair UG, Sarkar A (2017) Fabrication and application of low-cost thiol functionalized coal fly ash for selective adsorption of heavy toxic metal ions from water. Ind Eng Chem Res 56:1461–1470

    Article  CAS  Google Scholar 

  79. Anirudhan TS, Radhakrishnan PG, Suchithra PS (2008) Adsorptive removal of mercury(II) ions from water and wastewater by polymerized tamarind fruit shell. Sep Sci Technol 43:3522–3544. https://doi.org/10.1080/01496390802222459

    Article  CAS  Google Scholar 

  80. Singh V, Kumar P (2011) Design of nanostructured tamarind seed kernel polysaccharide-silica hybrids for mercury (II) removal. Sep Sci Technol 46:825–838. https://doi.org/10.1080/01496395.2010.534120

    Article  CAS  Google Scholar 

  81. Sharma R, Raghav S, Nair M, Kumar D (2018) Kinetics and adsorption studies of mercury and lead by ceria nanoparticles entrapped in tamarind powder. ACS Omega 3:14606–14619. https://doi.org/10.1021/acsomega.8b01874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gupta S, Babu BV (2009) Utilization of waste product (tamarind seeds) for the removal of Cr(VI) from aqueous solutions: Equilibrium, kinetics, and regeneration studies. J Environ Manage 90:3013–3022. https://doi.org/10.1016/j.jenvman.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  83. Singh CK, Sahu JN, Mahalik KK et al (2008) Studies on the removal of Pb(II) from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid. J Hazard Mater 153:221–228. https://doi.org/10.1016/j.jhazmat.2007.08.043

    Article  CAS  PubMed  Google Scholar 

  84. Babu BV, Gupta S (2008) Removal of Cr(VI) from wastewater using activated tamarind seeds as an adsorbent. J Environ Eng Sci 7:553–557. https://doi.org/10.1139/S08-025

    Article  CAS  Google Scholar 

  85. Gupta S, Babu B V Adsorption of chromium (VI) by a low-cost adsorbent prepared from tamarind seeds. 1–6

  86. Suganthi N (2013) Removal of chromium(VI) from wastewater using phosphoric acid treated activated carbon. AIP Conf Proc 1538:128–134. https://doi.org/10.1063/1.4810043

    Article  CAS  Google Scholar 

  87. Sahu JN, Acharya J, Sahoo BK, Meikap BC (2016) Optimization of lead (II) sorption potential using developed activated carbon from tamarind wood with chemical activation by zinc chloride. Desalin Water Treat 57:2006–2017. https://doi.org/10.1080/19443994.2014.979446

    Article  CAS  Google Scholar 

  88. Sahu JN, Acharya J, Meikap BC (2009) Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process. J Hazard Mater 172:818–825. https://doi.org/10.1016/j.jhazmat.2009.07.075

    Article  CAS  PubMed  Google Scholar 

  89. Acharya J, Sahu JN, Mohanty CR, Meikap BC (2009) Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chem Eng J 149:249–262. https://doi.org/10.1016/j.cej.2008.10.029

    Article  CAS  Google Scholar 

  90. Acharya J, Sahu JN, Sahoo BK et al (2009) Removal of chromium(VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride. Chem Eng J 150:25–39. https://doi.org/10.1016/j.cej.2008.11.035

    Article  CAS  Google Scholar 

  91. Bangaraiah P, Sarath Babu B, Abraham Peele K et al (2020) Removal of multiple metals using Tamarindus indica as biosorbent through optimization of process variables: a statistical approach. Int J Environ Sci Technol 17:1835–1846. https://doi.org/10.1007/s13762-019-02490-5

    Article  CAS  Google Scholar 

  92. Mopoung S, Moonsri P, Palas W, Khumpai S (2015) Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe(III) adsorption from aqueous solution. Sci World J. https://doi.org/10.1155/2015/415961

    Article  Google Scholar 

  93. Popuri SR, Jammala A, Reddy KVNS, Abburi K (2007) Biosorption of hexavalent chromium using tamarind (Tamarindus indica) fruit shell-a comparative study. Electron J Biotechnol 10:358–367. https://doi.org/10.2225/vol10-issue3-fulltext-11

    Article  CAS  Google Scholar 

  94. Verma A, Chakraborty S, Basu JK (2006) Adsorption study of hexavalent chromium using tamarind hull-based adsorbents. Sep Purif Technol 50:336–341. https://doi.org/10.1016/j.seppur.2005.12.007

    Article  CAS  Google Scholar 

  95. Agarwal GS, Bhuptawat HK, Chaudhari S (2006) Biosorption of aqueous chromium(VI) by Tamarindus indica seeds. Bioresour Technol 97:949–956. https://doi.org/10.1016/j.biortech.2005.04.030

    Article  CAS  PubMed  Google Scholar 

  96. Ahalya N, Kanamadi RD, Ramachandra TV (2008) Biosorption of chromium (VI) by Tamarindus indica pod shells. Int J Environ Sci Res 1:77–81

    Google Scholar 

  97. Vaza JS, Bhalerao SA (2018) Removal of Hexavalent chromium by using citric acid modified Tamarind pod shell powder Tamarindus indica L. Int J Trend Sci Res Dev 3:200–215

    Google Scholar 

  98. Vaza JS, Bhalerao SA (2019) Adsorption isotherm studies of Zn (II) ions from aqueous solution using citric acid modified Tamarind pod shell (Tamarindus indica L). 5:67–77

  99. Pandharipande SL, Kalnake RP (2013) Tamarind fruit shell adsorbent synthesis, characterization and adsorption studies for removal of Cr(Vi) & Ni(Ii) Ions from aqueous solution. Int J Eng Sci Emerg Technol 4:83–89

    Google Scholar 

  100. Suganthi S, Srinivasan K (2010) Phosphorylated tamarind nut carbon for the removal of cadmium ions from aqueous solutions. Indian J Eng Mater Sci 17:382–388

    CAS  Google Scholar 

  101. Gupta S, Babu B. (2008) Economic feasibility analysis of low cost adsorbents for the removal of Cr (VI) from wastewater. Int Conv Water Resour Dev Manag 1–7

  102. Sruthi T, Ashok J, Nissy MS et al (2019) Extraction and removal of Nickel from battery waste, using Nano sized activated carbon of Coconut shell and Tamarind seed powders in a column. Mater Today Proc 18:5240–5246. https://doi.org/10.1016/j.matpr.2019.07.524

    Article  CAS  Google Scholar 

  103. Anirudhan TS, Radhakrishnan PG (2010) Uptake and desorption of nickel(II) using polymerised tamarind fruit shell with acidic functional groups in aqueous environments. Chem Ecol 26:93–109. https://doi.org/10.1080/02757541003627613

    Article  CAS  Google Scholar 

  104. Maiti A, Agarwal V, De S, Basu JK (2010) Removal of As(V) using iron oxide impregnated carbon prepared from Tamarind hull. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng 45:1207–1216. https://doi.org/10.1080/10934529.2010.493783

    Article  CAS  Google Scholar 

  105. Anirudhan TS, Radhakrishnan PG (2010) Adsorptive performance of an amine-functionalized poly(hydroxyethylmethacrylate)-grafted tamarind fruit shell for vanadium(V) removal from aqueous solutions. Chem Eng J 165:142–150. https://doi.org/10.1016/j.cej.2010.09.005

    Article  CAS  Google Scholar 

  106. Anirudhan TS, Radhakrishnan PG (2008) Thermodynamics and kinetics of adsorption of Cu (II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell. J Chem Thermodyn 40:702–709. https://doi.org/10.1016/j.jct.2007.10.005

    Article  CAS  Google Scholar 

  107. López-González H, Serrano-Gómez J, Olguín MT et al (2017) Removal of Co by carbonaceous material obtained through solution combustion of tamarind shell. Int J Phytoremediation 19:1126–1133. https://doi.org/10.1080/15226514.2017.1328393

    Article  CAS  PubMed  Google Scholar 

  108. Singh AV, Kumawat IK (2012) Preparation and characterisation of tamarind 4-hydroxybenzoic acid (THBA) resin and its use in extraction of heavy metal ions from industrial wastewater. Water SA 38:529–536. https://doi.org/10.4314/wsa.v38i4.7

    Article  CAS  Google Scholar 

  109. Singh AV, Singh R (2013) Synthesis, characterization, and application of tamarind nitrilotriacetic acid resin in removal of heavy metal ions from industrial effluent. Environ Prog Sustain 32:103–108. https://doi.org/10.1002/ep.10619

    Article  CAS  Google Scholar 

  110. Singh AV, Sharma NK (2012) Synthesis, characterization, and applications of a new ion exchanger tamarind 4-aminobenzoic acid (TABA) resin in industrial wastewater treatment. Int J Polym Mater Polym Biomater 61:199–213. https://doi.org/10.1080/00914037.2011.574654

    Article  CAS  Google Scholar 

  111. Singh AV, Soni DK, Kumawat IK (2012) Synthesis, characterisation and application of new tamarind triethylamine (TTEA) resin for removal of toxic metal ions from the effluent of Puneet Steel Industry, Jodhpur, Rajasthan. Water Environ J 26:371–380. https://doi.org/10.1111/j.1747-6593.2011.00297.x

    Article  CAS  Google Scholar 

  112. Singh AV, Sharma NK, Rathore AS (2012) Synthesis, characterization and applications of a new cation exchanger tamarind sulphonic acid (TSA) resin. Environ Technol 33:473–480

    Article  CAS  Google Scholar 

  113. Singh AV, Sharma NK (2011) Synthesis and characterization of an ion exchanger based on tamarind kernel powder and its application for removal of some metal ions from industrial effluents. Toxicol Environ Chem 93:1897–1907. https://doi.org/10.1080/02772248.2011.626414

    Article  CAS  Google Scholar 

  114. Choudhary M, Chowdhary A, Gupta V (2019) Synthesis and application of chemically modified tamarind based TTPCA resin for removal of toxic metals from industrial effluents. J Pharmacogn Phytochem 8:107–110

    CAS  Google Scholar 

  115. Talman RY, Atun G (2006) Effects of cationic and anionic surfactants on the adsorption of toluidine blue onto fly ash. Colloids Surf A 281:15–22. https://doi.org/10.1016/j.colsurfa.2006.02.006

    Article  CAS  Google Scholar 

  116. Velmurugan P, Rathinakumar V, Dhinakaran G (2011) Dye removal from aqueous solution using low cost adsorbent. Int J Environ Sci 1:1492–1503

    CAS  Google Scholar 

  117. Wang CC, Juang LC, Hsu TC, Lee CK, Lee JF, Huang FC (2004) Adsorption of basic dyes onto montmorillionite. Colloid Int Sci 272:80–86. https://doi.org/10.1016/j.jcis.2003.12.028

    Article  CAS  Google Scholar 

  118. Helen SM (2020) Comparative study of adsorption capacity of tamarind fruit cover and tamarind nut cover for removal of congo red dye by batch equilibrium studies. IJRAR-Int J Res Anal Rev (IJRAR) 7:522–529

    Google Scholar 

  119. Pal A, Pal S (2017) Amphiphilic copolymer derived from tamarind gum and poly (methyl methacrylate) via ATRP towards selective removal of toxic dyes. Carbohydr Polym 160:1–8. https://doi.org/10.1016/j.carbpol.2016.12.008

    Article  CAS  PubMed  Google Scholar 

  120. Gupta V, Agarwal A, Singh MK, Singh NB (2019) Kail sawdust charcoal: a low-cost adsorbent for removal of textile dyes from aqueous solution. SN Appl Sci 1:1271

    Article  CAS  Google Scholar 

  121. Shah K, Parmar A (2018) Removal of safranin O dye from synthetic wastewater by activated Carbon prepared from Tamarind seeds. Int J Appl Eng Res 13:10105–10107

    Google Scholar 

  122. Adams AD, Enyeribe C, Kadanga B, Zubair H, Arogundade MO (2019) Kinetic, equilibrium and thermodynamic studies on adsorption of acid red 1 from aqueous solution using activated tamarind kernel powder. FUW Trends Sci Technol J 4:848–856

    Google Scholar 

  123. Radhakrishnan PG, Varghese SP, Das C, B, (2018) Application of ethylenediamine hydroxypropyl tamarind fruit shell as adsorbent to remove Eriochrome black T from aqueous solutions–Kinetic and equilibrium studies. Sep Sci Technol 53:417–438. https://doi.org/10.1080/01496395.2017.1404614

    Article  CAS  Google Scholar 

  124. Orlando US, Baes AU, Nishigima W, Okada M (2002) Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity. Chemosphere 48:1041. https://doi.org/10.1016/S0045-6535(02)00147-9

    Article  CAS  PubMed  Google Scholar 

  125. Pal S, Ghorai S, Das C et al (2012) Carboxymethyl tamarind-g-poly(acrylamide)/silica: A high performance hybrid nanocomposite for adsorption of methylene blue dye. Ind Eng Chem Res 51:15546–15556. https://doi.org/10.1021/ie301134a

    Article  CAS  Google Scholar 

  126. Sen G, Pal S (2009) Polyacrylamide grafted carboxymethyl tamarind (CMT-g-PAM): development and application of a novel polymeric flocculant. Macromol Symp 277:100

    Article  CAS  Google Scholar 

  127. Maharamanlioglu M, Kizilcikli I, Bicer IO (2002) Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. J Fluorine Chem 115:41–47. https://doi.org/10.1016/S0022-1139(02)00003-9

    Article  Google Scholar 

  128. Sorg TJ (1978) Treatment technology to meet the interim primary drinking water regulations for inorganics. J Am Water Works Assoc 70:105–111. https://doi.org/10.1002/j.1551-8833.1978.tb04198.x

    Article  CAS  Google Scholar 

  129. Bhatnagar A, Kumar E, Sillanpaa M (2011) Fluoride removal from water–a review. Chem Eng J 171:811–840. https://doi.org/10.1016/j.cej.2011.05.028

    Article  CAS  Google Scholar 

  130. Miretzky P, Cirelli AF (2011) Fluoride removal from water by chitosan derivatives and composites: a review. J Fluorine Chem 132:231–240. https://doi.org/10.1016/j.jfluchem.2011.02.001

    Article  CAS  Google Scholar 

  131. Mohapatra M, Anand S, Mishra BK, Giles DE, Singh P (2009) Review of fluoride removal from drinking water. J Environ Manage 91:67–77. https://doi.org/10.1016/j.jenvman.2009.08.015

    Article  CAS  PubMed  Google Scholar 

  132. Sivasankar V, Rajkumar S, Murugesh S, Darchen A (2012) Influence of shaking or stirring dynamic methods in the defluoridation behavior of activated tamarind fruit shell carbon. Chem Eng J 197:162–172. https://doi.org/10.1016/j.cej.2012.05.023

    Article  CAS  Google Scholar 

  133. Sivasankar V, Rajkumar S, Murugesh S, Darchen A (2012) Tamarind (Tamarindus indica) fruit shell carbon: A calcium-rich promising adsorbent for fluoride removal from groundwater. J Hazard Mater 225–226:164–172. https://doi.org/10.1016/j.jhazmat.2012.05.015

    Article  CAS  PubMed  Google Scholar 

  134. Sivasankar V, Ramachandramoorthy T, Chandramohan A (2010) Fluoride removal from water using activated and MnO2-coated Tamarind Fruit (Tamarindus indica) shell: Batch and column studies. J Hazard Mater 177:719–729. https://doi.org/10.1016/j.jhazmat.2009.12.091

    Article  CAS  PubMed  Google Scholar 

  135. Karci A, Balcioglu IA (2009) Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci Total Environ 407:4652–4664. https://doi.org/10.1016/j.scitotenv.2009.04.047

    Article  CAS  PubMed  Google Scholar 

  136. Wang QJ, Mo CH, Li YW, Gao P, Tai YP, Zhang Y, Ruan ZL, Xu JW (2010) Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao. Environ Pollut 158:2350–2358. https://doi.org/10.1016/j.envpol.2010.03.019

    Article  CAS  PubMed  Google Scholar 

  137. Tong C, Zhuo X, Guo X (2011) Occurrence and risk assessment of four typical fluoroquinolone antibiotics in raw and treated sewage and in receiving waters in Hangzhou, China. J Agric Food Chem 59:7303–7309. https://doi.org/10.1021/jf2013937

    Article  CAS  PubMed  Google Scholar 

  138. Seifrtova M, Pena A, Lino CM, Solich P (2008) Determination of fluoroquinolone antibiotics in hospital and municipal wastewaters in Coimbra by liquid chromatography with a monolithic column and fluorescence detection. Anal Bioanal Chem 391:799–805

    Article  CAS  Google Scholar 

  139. Samanta S, Chowdhury S, Dassharma D, Halder G (2019) The biosorptive uptake of enrofloxacin from synthetically produced contaminated water by tamarind seed derived activated carbon. RSC Adv 10:1204–1218. https://doi.org/10.1039/c9ra08995k

    Article  CAS  Google Scholar 

  140. Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel (II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. J Hazard Mater 133:304–308

    Article  CAS  Google Scholar 

  141. Adamson A, Gast A (1997) Physical chemistry of surfaces, 6th edn. Wiley, New York, pp 1–808

    Google Scholar 

  142. Israel U, Eduok U (2004) Biosorption of zinc from aqueous solution using coconut (Cocos nucifera L) coir dust. Arch Appl Sci Res 4(2):809–819

    Google Scholar 

  143. Cheung WH, Szeto YS, McKay G (2007) Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour Technol 98:2897–2904

    Article  CAS  Google Scholar 

  144. Ahmed HB, Emam HE (2020) Seeded growth core-shell (Ag–Au–Pd) ternary nanostructure at room temperature for potential water treatment. Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106720

    Article  Google Scholar 

  145. Emam HE, Mikhail MM, El-Sherbiny S et al (2020) Metal-dependent nano-catalysis in reduction of aromatic pollutants. Environ Sci Pollut Res 27:6459–6475. https://doi.org/10.1007/s11356-019-07315-z

    Article  CAS  Google Scholar 

  146. Ahmed HB, Saad N, Emam HE (2021) Recyclable palladium based nano-catalytic laborer encaged within bio-granules for dye degradation. Surf Interfaces 25:101175. https://doi.org/10.1016/j.surfin.2021.101175

    Article  CAS  Google Scholar 

  147. Emam HE, Ahmed HB, Gomaa E et al (2019) Doping of silver vanadate and silver tungstate nanoparticles for enhancement the photocatalytic activity of MIL-125-NH2 in dye degradation. J Photochem Photobiol A Chem 383:111986. https://doi.org/10.1016/j.jphotochem.2019.111986

    Article  CAS  Google Scholar 

  148. Deng S, Bai R, Chen JP (2003) Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir 19:5058–5064. https://doi.org/10.1021/la034061x

    Article  CAS  Google Scholar 

  149. Unnithan MR, Vinod VP, Anirudhan TS (2004) Synthesis, characterization, and application as a chromium (VI) adsorbent of amine-modified polyacrylamide-grafted coconut coir pith. Ind Eng Chem Res 43:2247–2255. https://doi.org/10.1021/ie0302084

    Article  CAS  Google Scholar 

  150. Sarkar C, Bora C, Dolui SK (2014) Selective dye adsorption by pH modulation on amine functionalized reduced graphene oxide–carbon nanotube hybrid. Ind Eng Chem Res 53:16148–16155. https://doi.org/10.1021/ie502653t

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors are thankful to the UGC (University Grants Commission) and CSIR (Council of Scientific and Industrial Research), New Delhi, India, for providing financial support to carry out this work. Authors also appreciate Principal, Acharya Narendra Dev College and Sri Venkateshwara College for their guidance and providing research facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Hooda.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, V., Saya, L., Gautam, D. et al. Review on adsorptive removal of metal ions and dyes from wastewater using tamarind-based bio-composites. Polym. Bull. 79, 9267–9302 (2022). https://doi.org/10.1007/s00289-021-03991-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03991-5

Keywords

Navigation