Skip to main content

Advertisement

Log in

Surface modification of human hair by grafting poly(methyl methacrylate)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Human hair is a slow-degrading nanocomposite biological fiber. In the present work, the surface of human hair has been modified via grafting of poly(methyl methacrylate). The grafting has been done via free radical polymerization using graft from approach. The percent grafting calculated from thermo-gravimetric analysis data was in good agreement with the percent grafting calculated from gravimetric method. The scanning electron microscopy images showed that the hair surface got completely covered when the weight of methyl methacrylate was twice that of human hair in the feed. The ultimate tensile strength and modulus were found to be 1099 MPa and 20 GPa, respectively, when hair was grafted with feed ratio of 2:1 for methyl methacrylate and hair, as compared to 795 MPa and 16 GPa, respectively, for virgin human hair. An improvement in chemical stability was also observed on grafting, under both basic and acidic conditions. The effect of grafting on swelling and adsorption properties has also been studied. For a lower contact time, the removal efficiency was found to be more for anionic dye, methyl orange as compared to cationic dye, methylene blue, but as the contact time increased, the removal efficiency of grafted copolymers for methylene blue increased significantly. The effect of contact time, pH, adsorbent dosage, initial dye concentration on absorption and desorption studies has also been done. The adsorption behavior was studied using isotherm models Langmuir, Freundlich and Temkin model, and adsorption kinetics were investigated using pseudo-first-order and pseudo-second-order model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

AIBN:

Azobisisobutyronitrile

BIS:

N, N′-methylenebisacrylamide

DSC:

Differential scanning calorimeter

DMA:

Dynamic mechanical analyzer

FT-IR:

Fourier transform infrared spectroscopy

HH:

Human hair

HHact :

Activated human hair

MMA:

Methyl methacrylate

MB:

Methylene blue

MO:

Methyl orange

PMMA:

Poly(methyl methacrylate)

SEM:

Surface electron microscopy

TGA:

Thermogravimetric analysis

THF:

Tetrahydrofuran

UTS:

Ultimate tensile strength

b:

Langmuir constant related with energy of adsorption

b T :

Heat of adsorption

C e :

Concentration at equilibrium

C o :

Initial concentration

C f :

Final concentration

K :

Rate constant

K f :

Freundlich isotherm constants

K T :

Equilibrium binding constant

M :

Weight of adsorbent

n :

Adsorption intensity

Q e :

Desorption capacity at equilibrium

Q t :

Sorption capacities at time t

q e :

Adsorption capacity at equilibrium

q m :

Langmuir constant

q t :

Adsorption capacity at time t

R :

Universal gas constant

R 2 :

Correlation coefficient

T :

Absolute temperature

V :

Volume of dye solution

W i :

Initial weight of polymer

W f :

Final weight of polymer

η :

Removal efficiency

References

  1. Xueliang X (2020) Animal Fibers. In: Hu J (ed) Handbook of fibrous materials, 1st edn. Wiley-VCH, pp 35–74. https://doi.org/10.1002/9783527342587.ch2

    Chapter  Google Scholar 

  2. Gupta A (2014) Human hair “waste” and its utilization: gaps and possibilities. J Waste Manag. https://doi.org/10.1155/2014/498018

    Article  Google Scholar 

  3. Martínez-Hernández AL, Velasco-Santos C, de-Icaza M, Castaño VM (2007) Dynamical-mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers. Compos Part B Eng 38:405–410. https://doi.org/10.1016/j.compositesb.2006.06.013

    Article  CAS  Google Scholar 

  4. Verma A, Singh VK, Verma SK, Sharma A (2016) Human hair: a biodegradable composite fiber–a review. Int J Waste Resour. https://doi.org/10.4172/2252-5211.1000206

    Article  Google Scholar 

  5. Kaplin IJ, Schwan A, Zahn H (1982) Effects of cosmetic treatments on the ultrastructure of hair. Cosmet Toilet 97:22–26

    CAS  Google Scholar 

  6. Wagner RDCC, Joekes I (2005) Hair protein removal by sodium dodecyl Sulfate. Colloids Surf B Biointerf 41:7–14. https://doi.org/10.1016/j.colsurfb.2004.10.023

    Article  CAS  Google Scholar 

  7. Prasong S, Wasan T (2011) Preparation and characterization of hair keratin/gelatin blend films. Pakistan J Biol Sci 14:351–356. https://doi.org/10.3923/pjbs.2011.351.356

    Article  CAS  Google Scholar 

  8. Bertini F, Canetti M, Patrucco A, Zoccola M (2013) Wool keratin-polypropylene composites: properties and thermal degradation. Polym Degrad Stab 98:980–987. https://doi.org/10.1016/j.polymdegradstab.2013.02.011

    Article  CAS  Google Scholar 

  9. Baghdadli N, Luengo GS (2008) A closer look at the complex hydrophilic/hydrophobic interactions forces at the human hair surface. J Phys Conf Ser 100:3–7. https://doi.org/10.1088/1742-6596/100/5/052034

    Article  CAS  Google Scholar 

  10. Velasco MVR, de Sá Dias TC, de Freitas AZ, Junior NDV, de Oliveira Pinto CAS, Kaniko TM, Baby AR (2009) Hair fiber characteristics and methods to evaluate hair physical and mechanical properties. Braz J Pharm Sci 45:153–162. https://doi.org/10.1590/S1984-82502009000100019

    Article  Google Scholar 

  11. Bhushan B, Chen N (2006) AFM studies of environmental effects on nanomechanical properties and cellular structure of human hair. Ultramicroscopy 106:755–764. https://doi.org/10.1016/j.ultramic.2005.12.010

    Article  CAS  PubMed  Google Scholar 

  12. Robbins CR, Crawford RJ (1991) Cuticle damage and the tensile properties of human hair. J Soc Cosmet Chem 42:59–67

    Google Scholar 

  13. Feughelman M (1997) Morphology and properties of hair. In: Johnson DH (ed) Hair and hair care. Marcel Dekker, New York, pp 1–32

    Google Scholar 

  14. Wang N, Barfoot R, Butler MF, Durkan C (2018) Effect of surface treatments on the nanomechanical properties of human hair. ACS Biomater Sci Eng 4:3063–3071. https://doi.org/10.1021/acsbiomaterials.8b00687

    Article  CAS  PubMed  Google Scholar 

  15. Grams YY, Alaruikka S, Lashley L, Caussin J, Whitehead L (2003) Permeant lipophilicity and vehicle composition influence accumulation of dyes in hair follicles of human skin. Eur J Pharm Sci 18:329–336. https://doi.org/10.1016/S0928-0987(03)00035-6

    Article  CAS  PubMed  Google Scholar 

  16. McFadden JP, White IR, Frosch PJ, Sosted H, Johansen JD, Menne T (2007) Allergy to hair dye–its incidence is rising, as more and younger people dye their hair. Br Med J 334:220. https://doi.org/10.1136/bmj.39042.643206.BE

    Article  Google Scholar 

  17. Freddi G, Tsukada M, Shiozaki H (1999) Chemical modification of wool fibers with acid anhydrides. J Appl Polym Sci 71:1573–1579. https://doi.org/10.1002/(sici)1097-4628(19990307)71:10%3c1573::aid-app5%3e3.0.co;2-a

    Article  CAS  Google Scholar 

  18. Abdel-Fattah S, Geczy I (1974) Graft polymerization of methyl methacrylate onto wool initiated by hydrogen peroxide—sodium thiosulphate redox system. Polym J 6:542–548. https://doi.org/10.1295/polymj.6.542

    Article  CAS  Google Scholar 

  19. Asquith RS, Leon NH (1977) Chemical reactions of keratin fibres. Springer, pp 193–265. https://doi.org/10.1007/978-1-4613-4109-3_5

    Book  Google Scholar 

  20. Zhang H, Carrillo-Navarrete F, López-Mesas M, Palet C (2020) Use of chemically treated human hair wastes for the removal of heavy METAL ions from water. Water 12:1–17. https://doi.org/10.3390/W12051263

    Article  Google Scholar 

  21. Malinauskyte E, Cornwell PA, Reay L, Shaw N, Petkov J (2020) Effect of equilibrium pH on the structure and properties of bleach-damaged human hair fibers. Biopolymers. https://doi.org/10.1002/bip.23401

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bolduc C, Shapiro J (2001) Hair care products: waving, straightening, conditioning, and coloring. Clin Dermatol 19:431–436. https://doi.org/10.1016/S0738-081X(01)00201-2

    Article  CAS  PubMed  Google Scholar 

  23. Sharma G, Naushad M, Pathania D, Mittal A, El-Desoky GE (2014) Modification of hibiscus cannabinus fiber by graft copolymerization: application for dye removal. Desalin Water Treat 54:3114–3121. https://doi.org/10.1080/19443994.2014.904822

    Article  CAS  Google Scholar 

  24. Shi Z, Reddy N, Hou X, Yang Y (2014) Development and characterization of thermoplastics from corn distillers grains grafted with various methacrylates. Ind Eng Chem Res 53:13963–13970. https://doi.org/10.1021/ie501987n

    Article  CAS  Google Scholar 

  25. Candido ICM, Pires ICB, de Oliveira HP (2021) Natural and synthetic fiber-based adsorbents for water remediation. Clean Soil Air Water 49:1–11. https://doi.org/10.1002/clen.202000189

    Article  CAS  Google Scholar 

  26. Chowdhury S, Saha PD (2012) Biosorption of methylene blue from aqueous solutions by a waste biomaterial: hen feathers. Appl Water Sci 2:209–219. https://doi.org/10.1007/s13201-012-0039-0

    Article  CAS  Google Scholar 

  27. Gao P, Li K, Liu Z, Liu B, Ma C, Xue G, Zhou M (2014) Feather keratin deposits as biosorbent for the removal of methylene blue from aqueous solution: equilibrium, kinetics, and thermodynamics studies. Water Air Soil Pollut. https://doi.org/10.1007/s11270-014-1946-5

    Article  Google Scholar 

  28. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  CAS  PubMed  Google Scholar 

  29. Darmokoesoemo H, Magdhalena PTWLC, Kusuma HS (2016) Telescope snail (Telescopium Sp) and mangrove crab (Scylla Sp) as adsorbent for the removal of Pb2+ from aqueous solutions. Rasayan J Chem 9:680–685

    CAS  Google Scholar 

  30. Darmokoesoemo H, Setianingsih FR, Putranto TWLC, Kusuma HS (2016) Horn snail (Telescopium Sp) and mud crab (Scylla Sp) shells powder as low cost adsorbents for removal of Cu2+ from synthetic wastewater. Rasayan J Chem 9:550–555

    CAS  Google Scholar 

  31. Thakur VK, Thakur MK, Gupta RK (2014) Graft copolymers of natural fibers for green composites. Carbohydr Polym 104:87–93. https://doi.org/10.1016/j.carbpol.2014.01.016

    Article  CAS  PubMed  Google Scholar 

  32. Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49:1253–1272. https://doi.org/10.1002/pen

    Article  CAS  Google Scholar 

  33. Morinaga H, Ochiai B, Mori H, Endo T (2006) Anionic grafting polymerization of propylene sulfide onto human hair in water. J Polym Sci Part A Polym Chem 44:3778–3786. https://doi.org/10.1002/pola.21478

    Article  CAS  Google Scholar 

  34. Lee S, Zürcher S, Dorcier A, Luengo GS, Spencer ND (2009) Adsorption and lubricating properties of Poly(l-lysine)-graft-Poly(ethylene glycol) on human-hair surfaces. ACS Appl Mater Interf 1:1938–1945. https://doi.org/10.1021/am900337z

    Article  CAS  Google Scholar 

  35. Wang L, Cavaco-Paulo A, Xu B, Martins M (2019) Polymeric hydrogel coating for modulating the shape of keratin fiber. Front Chem. https://doi.org/10.3389/fchem.2019.00749

    Article  PubMed  PubMed Central  Google Scholar 

  36. Robbins CR, Robbins CR (1988) Bleaching human hair. Chem Phys Behav Hum Hair. https://doi.org/10.1007/978-1-4757-2009-9_4

    Article  Google Scholar 

  37. Xu H, Song K, Mu B, Yang Y (2017) Green and sustainable technology for high-efficiency and low-damage manipulation of densely crosslinked proteins. ACS Omega 2:1760–1768. https://doi.org/10.1021/acsomega.7b00154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grassi L, Cabrele C (2019) Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amino Acids 51:1409–1431. https://doi.org/10.1007/s00726-019-02787-2

    Article  CAS  PubMed  Google Scholar 

  39. Davies MJ (2016) Protein oxidation and peroxidation. Biochem J 473:805–825. https://doi.org/10.1042/BJ20151227

    Article  CAS  PubMed  Google Scholar 

  40. Fairbanks BD, Singh SP, Bowman CN, Anseth KS (2011) Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules 44:2444–2450. https://doi.org/10.1021/ma200202w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ji Y, Yang X, Ji Z, Zhu L, Ma N, Chen D, Jia X, Tang J, Cao Y (2020) DFT-calculated IR spectrum amide I, II, and III band contributions of N-Methylacetamide fine components. ACS Omega 5:8572–8578. https://doi.org/10.1021/acsomega.9b04421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hopkins J, Brenner L, Tumosa CS (1991) Variation of the amide I and amide II peak absorbance ratio in human hair as measured by fourier transform infrared spectroscopy. Forensic Sci Int 50:61–65. https://doi.org/10.1016/0379-0738(91)90134-5

    Article  CAS  PubMed  Google Scholar 

  43. Parker FS (1971) Amides and amines. Appl Infrared Spectrosc Biochem Biol Med 1:165–172. https://doi.org/10.1007/978-1-4684-1872-9_8

    Article  Google Scholar 

  44. Mujeeb MA, Zafar MKM (2017) FTIR spectroscopic analysis on human hair. Int J Innov Res Sci Eng Technol 6:9327–9332. https://doi.org/10.15680/IJIRSET.2017.0605195

    Article  Google Scholar 

  45. Terashima M, Yoshimura K, Imai T, Hozan D, Shirai K (2000) Properties of protein extracted as S-sulfonate derivative from irradiated mink hair. Anim Sci J 71:76–82

    CAS  Google Scholar 

  46. Deoghare C, Nadkarni VS, Behera RN, Chauhan R (2019) Copolymers with pendant N-arylimide groups via atom transfer radical polymerization: synthesis, characterization and kinetic study. Polym Sci Ser B 61:170–179. https://doi.org/10.1134/S1560090419020015

    Article  Google Scholar 

  47. Xiao X, Hu J (2016) Animal hairs as water-stimulated shape memory materials: mechanism and structural networks in molecular assemblies. Sci Rep 6:1–12. https://doi.org/10.1038/srep26393

    Article  CAS  Google Scholar 

  48. Embi Bs AA (2018) Absence of H2O2 breakdown in human hair medulla implications IN follicular melanogenesis. Int J Res Granthaalayah 6:72–78. https://doi.org/10.29121/granthaalayah.v6.i9.2018.1209

    Article  Google Scholar 

  49. Feughelman M (1959) The change in stress on wetting and drying wool fibers. Text Res J 29:967–970. https://doi.org/10.1177/004051755902901205

    Article  CAS  Google Scholar 

  50. Wortmann FJ, Zahn H (1994) The stress/strain curve of α-keratin fibres and the structure of the intermediate filament. Text Res J 64:737–743

    Article  CAS  Google Scholar 

  51. Chapman BM (1969) A mechanical model for wool and other keratin fibers. Text Res J 39:1102–1109. https://doi.org/10.1177/004051756903901204

    Article  CAS  Google Scholar 

  52. Feughelman M (1979) A note on the role of the microfibrils in the mechanical properties of α-keratins. J Macromol Sci Part B Phy 16:155–162. https://doi.org/10.1080/00222347908212288

    Article  Google Scholar 

  53. Deepmala K, Jain N, Singh VK, Chauhan S (2018) Fabrication and characterization of chitosan coated human hair reinforced phytagel modified soy protein-based green composite. J Mech Behav Mater 27:1–8. https://doi.org/10.1515/jmbm-2018-0007

    Article  CAS  Google Scholar 

  54. Robbins CR (2012) Chemical and physical behavior of human hair, 5th edn. Springer, Berlin

    Book  Google Scholar 

  55. Maddar FM, Perry D, Brooks R, Page A, Unwin PR (2019) Nanoscale surface charge visualization of human hair. Anal Chem 91:4632–4639. https://doi.org/10.1021/acs.analchem.8b05977

    Article  CAS  PubMed  Google Scholar 

  56. Popescu C, Höcker H (2007) Hair—the most sophisticated biological composite material. Chem Soc Rev 36:1282–1291. https://doi.org/10.1039/b604537p

    Article  CAS  PubMed  Google Scholar 

  57. Giraldo S, Robles I, Godínez LA, Acelas N, Florez E (2021) Experimental and theoretical insights on methylene blue removal from wastewater USING an adsorbent obtained from the residues of the orange industry. Molecules 26:4555. https://doi.org/10.3390/molecules26154555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chandrashekara MN, Ranganathaiah C (2010) Chemical and photochemical degradation of human hair: a free-volume microprobe study. J Photochem Photobiol B Biol 101:286–294. https://doi.org/10.1016/j.jphotobiol.2010.07.014

    Article  CAS  Google Scholar 

  59. Hu Y, Quan C, Guo M, Ye X, Wu Z (2017) Competitive adsorption of methyl orange and ethyl orange by AB-8 resin. Emerg Mater Res 6:369–377. https://doi.org/10.1680/jemmr.15.00082

    Article  Google Scholar 

  60. Chen H, Zhao J, Wu J, Dai G (2011) Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by SURFACTANT modified silkworm exuviae. J Hazard Mater 192:246–254. https://doi.org/10.1016/j.jhazmat.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  61. Le GTT, Chanlek N, Manyam J, Opaprakasit P, Grisdanurak N, Sreearunothai P (2019) Insight into the ultrasonication of graphene oxide with strong changes in its properties and performance for adsorption applications. Chem Eng J 373:1212–1222. https://doi.org/10.1016/j.cej.2019.05.108

    Article  CAS  Google Scholar 

  62. Al-Ghouti MA, Al-Absi RS (2020) Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci Rep 10:15928. https://doi.org/10.1038/s41598-020-72996-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Franca AS, Oliveira LS, Ferreira ME (2009) Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination 249:267–272. https://doi.org/10.1016/j.desal.2008.11.017

    Article  CAS  Google Scholar 

  64. Aluigi A, Rombaldoni F, Tonetti C, Jannoke L (2014) Study of methylene blue adsorption on keratin nanofibrous membranes. J Hazard Mater 268:156–165. https://doi.org/10.1016/j.jhazmat.2014.01.012

    Article  CAS  PubMed  Google Scholar 

  65. Parreira HC (1980) On the isoelectric point of human hair. J Colloid Interf Sci 75:212–217. https://doi.org/10.1016/0021-9797(80)90363-X

    Article  Google Scholar 

  66. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem. https://doi.org/10.1155/2017/3039817

    Article  Google Scholar 

  67. Song G, Zhu X, Chen R, Lio Q, Ding Y-D, Chen L (2016) An investigation of CO2 adsorption kinetics on porous magnesium oxide. Chem Eng J 283:175–183. https://doi.org/10.1016/j.cej.2015.07.055

    Article  CAS  Google Scholar 

  68. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interf Sci 276:47–52. https://doi.org/10.1016/j.jcis.2004.03.048

    Article  CAS  Google Scholar 

  69. Sahoo TR, Prelot B (2020) Adsorption processes for the removal of contaminants from wastewater. Elsevier Inc

    Book  Google Scholar 

  70. Mercado-Borrayo BM, Schouwenaars R, Litter MI, Montoya-Bautista CV, Ramirez-Zamora RMS (2014) Metallurgical slag as an efficient and economical adsorbent of arsenic. Elsevier Inc

    Book  Google Scholar 

  71. El Sikaily A, Khaled A, El Nemr A, Abdelwahab O (2006) Removal of methylene blue from aqueous solution by marine green alga ulva lactuca. Chem Ecol 22:149–157. https://doi.org/10.1080/02757540600579607

    Article  CAS  Google Scholar 

  72. Bhattacharya KG, Sharma A (2005) Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta Indica) leaf powder. Dye Pigment 65:51–59. https://doi.org/10.1016/j.dyepig.2004.06.016

    Article  CAS  Google Scholar 

  73. Ahmad Zaini MA, Sudi RM (2018) Valorization of human hair as methylene blue dye adsorbents. Green Process Synth 7:344–352. https://doi.org/10.1515/gps-2017-0021

    Article  CAS  Google Scholar 

  74. Salisu A, Sanagi MM, Karim KJA et al (2015) Adsorption of methylene blue on alginate-grafted-poly (methyl methacrylate). J Teknol 13:19–25

    Google Scholar 

  75. Pathania D, Sharma S, Singh P (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus Carica bast. Arab J Chem 10:S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021

    Article  CAS  Google Scholar 

  76. Basava Rao VV, Ram Mohan Rao S (2006) Adsorption studies on treatment of textile dyeing industrial effluent by flyash. Chem Eng J 116:77–84. https://doi.org/10.1016/j.cej.2005.09.029

    Article  CAS  Google Scholar 

  77. El Qada EN, Allen SJ, Walker GM (2008) Adsorption of basic dyes from aqueous solution onto activated carbons. Chem Eng J 135:174–184. https://doi.org/10.1016/j.cej.2007.02.023

    Article  CAS  Google Scholar 

  78. Fernandes AN, Almeida CAP, Menezes CTB et al (2007) Removal of methylene blue from aqueous solution by peat. J Hazard Mater 144:412–419. https://doi.org/10.1016/j.jhazmat.2006.10.053

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RC and HS are thankful to the Central Sophisticated Instrumentation Facility (CSIF) of BITS Pilani, K. K. Birla Goa campus, for providing the FE-SEM and Raman facility, and G. S. Mandal’s M-CAMRT, Aurangabad, for DSC and FT-IR. The support from BITS Pilani, K. K. Birla Goa Campus, in terms of fellowship for HS is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

HS carried out the experimental work and was involved in data interpretation and manuscript writing. SW provided the facilities for testing mechanical properties and was involved in data interpretation and manuscript writing. RC has conceived the idea, provided raw materials and was involved in data interpretation and manuscript writing. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Rashmi Chauhan.

Ethics declarations

Conflict of interest

The authors declare no personal, financial or organizational conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 441 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, H., Waigaonkar, S. & Chauhan, R. Surface modification of human hair by grafting poly(methyl methacrylate). Polym. Bull. 79, 11013–11050 (2022). https://doi.org/10.1007/s00289-021-03990-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03990-6

Keywords

Navigation