Skip to main content
Log in

Biodegradation of LDPE_TPS blends under controlled composting conditions

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Plastic waste can serve as a symbolic expression of environmental pollution because of its prevalence and extremely slow degradation. A well-known example of synthetic plastics is low-density polyethylene (LDPE). A pragmatic approach to mitigate the environmental problems is to develop biodegradable plastic without compromising the quality of properties or increasing the price. To meet these requirements, one must turn to polymers from natural sources, such as starch. Starch is a fully biodegradable, semi-crystalline, non-toxic polymer with difficulties in processing. To obtain thermoplastic starch (TPS), a biodegradable glycerol plasticizer and sheer processing are necessary over a so-called gelatinization. Here, we aim to prepare and investigate sustainable and environmentally friendly packaging materials based on biodegradable blends, such as LDPE_TPS. The prepared blends were subjected to extensive physicochemical characterization to clarify the functional performance and biodegradability. Changes in structure, morphology and chemical composition before and after biodegradation were interpreted and correlated. Problems such as high interfacial tension due to high incompatibility between the non-polar polyolefin and the highly polar TPS were alleviated for some blends. The observation of mechanical, diffusive and composting parameters suggests that the modifier plays a crucial role in obtaining homogeneous polymer blends. The study of LDPE_TPS blends shows that it is possible to produce polymer blends with good biodegradability and balanced mechanical performance at a reasonable price.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Plastics and Climate: The Hidden Costs of the Plastic Planet (2019). https://www.ciel.org/wp-content/uploads/2019/05/Plastic-and-Climate-FINAL-2019.pdf/ Accessed July 10, 2020

  2. Avio CG, Gorbi S, Regoli F (2017) Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Mar Environ Res 128:2–11. https://doi.org/10.1016/j.marenvres.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  3. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  4. Urbanek AK, Rymowicz W, Mirończuk AM (2018) Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol 102:7669–7678. https://doi.org/10.1007/s00253-018-9195-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Laycock B, Nikolić M, Colwell JM, Gauthier E, Halley P, Bottle S, George G (2017) Lifetime prediction of biodegradable polymers. Prog Polym Sci 71:144–189. https://doi.org/10.1016/j.progpolymsci.2017.02.004

    Article  CAS  Google Scholar 

  6. Naraya R (2017). In: Malinconico M (ed) Soil degradable bioplastics for a sustainable modern agriculture. Springer, Italy

    Google Scholar 

  7. Bulatović OV, Mandić V, Grgić KD, Ivančić A (2021) biodegradable polymer blends based on thermoplastic starch. J Polym Environ 29:492–508. https://doi.org/10.1007/s10924-020-01874-w

    Article  CAS  Google Scholar 

  8. Halonen N, Pálvölgyi PS, Bassani A, Fiorentini C, Nair R, Spigno G, Kordas K (2020) Bio-based smart materials for food packaging and sensors – a review. Front Mater 7:82. https://doi.org/10.3389/fmats.2020.00082

    Article  Google Scholar 

  9. Jolanta WK, Rydzkowski T, Borowski G, Szczypinski M, Klepka T, Thakur VK (2018) Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. Int J Polym Anal Charact 23:383–395. https://doi.org/10.1080/1023666X.2018.1455382

    Article  Google Scholar 

  10. Meran C, Ozturk O, Yuksel M (2008) Examination of the possibility of recycling and utilizing recycled polyethylene and polypropylene. Mater Des 29:701–705. https://doi.org/10.1016/j.matdes.2007.02.007

    Article  CAS  Google Scholar 

  11. Peres AM, Pires RR, Oréfic RL (2016) Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends. Carbohydr Polym 136:210–215. https://doi.org/10.1016/j.carbpol.2015.09.047

    Article  CAS  PubMed  Google Scholar 

  12. Alshammari BA, Alotaibi MD, Alothman OY, Sanjay MR, Kian LK, Almutairi Z, Jawaid M (2019) A new study on characterization and properties of natural fibers obtained from olive tree (olea europaea L.) Residues. J Polym Environ 27:2334–2340. https://doi.org/10.1007/s10924-019-01526-8

    Article  CAS  Google Scholar 

  13. Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T (2017) Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polym Degrad Stabil 137:251–271. https://doi.org/10.1016/j.polymdegradstab.2017.01.017

    Article  CAS  Google Scholar 

  14. Briassoulis D (2014) An overview on the mechanical behaviour of biodegradable agricultural films. J Polym Environ 12:65–81. https://doi.org/10.1023/B:JOOE.0000010052.86786.ef

    Article  Google Scholar 

  15. Bota J, Vukoje M, Brozović M, Hrnjak-Murgić Z (2017) reduced water permeability of biodegradable PCL nanocomposite coated paperboard packaging. Chem Biochem Eng Q 31:417–424. https://doi.org/10.15255/CABEQ.2017.1126

    Article  CAS  Google Scholar 

  16. Austrian Standards. Institute Austrian Standard: Analytical Methods and Quality Control for Waste Compost (1986) ÖNORM S 2023 Vienna, Austria

  17. Bergey DH, Holt JG (1994) Bergey’s manual of determinative bacteriology. Lippincott Williams and Wilkins, Baltimore

    Google Scholar 

  18. Briški F, Kopčić N, Ćosić I, Kučić D, Vuković M (2012) Biodegradation of tobacco waste by composting: genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate. Chem Pap 66:1103–1110. https://doi.org/10.2478/s11696-012-0234-3

    Article  CAS  Google Scholar 

  19. Kolthoff IM, Sandel EB (1951) Inorganic Quantitative Analysis. Školska knjiga, Zagreb, Croatia.

  20. Janjarasskul T, Krochta JM (2010) Edible packaging materials. Annu Rev Food Sci T 1:415–448. https://doi.org/10.1146/annurev.food.080708.100836

    Article  CAS  Google Scholar 

  21. Guilbert S, Cuq B, Contard N (1997) Recent innovations in edible and/or biodegradable packaging materials. Food Addit Contam 14:741–751. https://doi.org/10.1080/02652039709374585

    Article  CAS  PubMed  Google Scholar 

  22. Kallel T, Nageotte VM, Jaziri M, Gerard JF, Eleuch B (2003) Compatibilization of PE/PS and PE/PP blends. I. effect of processing conditions and formulation. J Appl Polym Sci 90:2475–2484. https://doi.org/10.1002/APP.12873

    Article  CAS  Google Scholar 

  23. Xing Z, Yang G (2010) Crystallization, melting behavior, and wettability of poly(e-caprolactone) and poly(e-caprolactone)/poly(Nvinylpyrrolidone) blends. J Appl Polym Sci 115:2747–2755. https://doi.org/10.1002/app.30069

    Article  CAS  Google Scholar 

  24. Radonjič G, Musil V, Šmit I (1998) Compatibilization of polypropylene/polystyrene blends’ with poly(styrene-b-butadiene-b-styrene) block copolymer. J Appl Polym Sci 69:2625–2639. https://doi.org/10.1002/(SICI)1097-4628(19980926)69:13%3c2625::AID-APP13%3e3.0.CO;2-T

    Article  Google Scholar 

  25. Clasen SH, Müller CMO, Pires ATN (2015) Maleic anhydride as a compatibilizer and plasticizer in TPS/PLA blends. J Braz Chem Soc 26:1583–1590. https://doi.org/10.5935/0103-5053.20150126

    Article  CAS  Google Scholar 

  26. Siracusa V (2012) Food packaging permeability behaviour: a report. Int J Polym Sci. https://doi.org/10.1155/2012/302029

    Article  Google Scholar 

  27. Turco R, Ortega-Toro R, Tesser R, Mallardo S, Collazo-Bigliardi S, Chiralt Boix A, Malinconico M, Rippa M, Di Serio M, Santagata G (2019) Poly (lactic acid)/thermoplastic starch films: effect of cardoon seed epoxidized oil on their chemicophysical, mechanical, and barrier properties. Coatings 9:574. https://doi.org/10.3390/coatings9090574

    Article  CAS  Google Scholar 

  28. Obasi HC, Igwe IO, Ogbobe O, Aharanwa BC, Egeolu FC (2015) Processing and characterization of thermoplastic starch/polypropylene blends. IJSRSET 2394–4099:7–13

    Google Scholar 

  29. Rosa DS, Guedes CGF, Carvalho CL (2007) Processing and thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends. J Mater Sci 42:551–557. https://doi.org/10.1007/s10853-006-1049-9

    Article  CAS  Google Scholar 

  30. Hanafi I, Razif N, Zulkifi A, Azura R (2010) Processability and miscibility of linear low density polyethylene/poly (vinyl alcohol) blends: in situ compatibilization with maleic anhydride. Iranian Polym J 19:297–308

    Google Scholar 

  31. Abdul MR, Ismail H, Mat TR (2009) Effects of PE-g-MA on tensile properties, morphology and water absorption of LDPE/thermoplastic sago starch blends. Polym Plast Technol Eng 48:919–924. https://doi.org/10.1080/03602550902995018

    Article  CAS  Google Scholar 

  32. Abioye AA, Fasanmi OO, Rotimi DO, Abioye OP, Obuekwe CC, Afolalu SA, Okokpujie IP (2019) Review of the development of biodegradable plastic from synthetic polymers and selected synthesized nanoparticle starches. J Phys Conf Ser 1378:042064. https://doi.org/10.1088/1742-6596/1378/4/042064

    Article  CAS  Google Scholar 

  33. Cerclé C, Sarazin P, Favis BD (2013) High performance polyethylene/thermoplastic starch blends through controlled emulsification phenomena. Carbohydr Polym 92138:148. https://doi.org/10.1016/j.carbpol.2012.08.107

    Article  CAS  Google Scholar 

  34. Abdullah ZW, Dong Y (2019) Biodegradable and water resistant poly(vinyl) alcohol (pva)/starch (ST)/glycerol (GL)/halloysite nanotube (HNT) nanocomposite films for sustainable food packaging. Front Mater 6:58. https://doi.org/10.3389/fmats.2019.00058

    Article  Google Scholar 

  35. Coates J (2000). In: Meyers RA (ed) Encyclopedia of analytical chemistry. John Wiley and Sons Ltd, Chichester

    Google Scholar 

  36. Tai NL, Adhikari R, Shanks R, Adhikari B (2019) Aerobic biodegradation of starch–polyurethane flexible films under soil burial condition: Changes in physical structure and chemical composition. Int Biodeterior Biodegrad 145:104793. https://doi.org/10.1016/j.ibiod.2019.104793

    Article  CAS  Google Scholar 

  37. Slouf M, Synkova H, Baldrian J, Marek A, Kovarova J, Schmidt P, Dorschner H, Stephan M, Gohs U (2008) Structural changes of uhmwpe after e-beam irradiation and thermal treatment. J Biomed Mater Res Part B: - Appl Biomater 85B:240–251. https://doi.org/10.1002/jbm.b.30942

    Article  CAS  Google Scholar 

  38. Slouf M, Michalkova D, Gajdosova V, Dybal J, Pilar J (2019) Prooxidant activity of phenolic stabilizers in polyolefins during accelerated photooxidation. Polym Degrad Stabil 166:307–324. https://doi.org/10.1016/j.polymdegradstab.2019.06.013

    Article  CAS  Google Scholar 

  39. Pilar J, Michalkova D, Slouf M, Vackova T (2015) Long-term accelerated weathering of HAS stabilized PE and PP plaques: Compliance of ESRI, IR and MH data characterizing heterogeneity of photooxidation. Polym Degrad Stabil 120:114–121. https://doi.org/10.1016/j.polymdegradstab.2015.06.011

    Article  CAS  Google Scholar 

  40. Grgić KD, Bera L, Miloloža M, Cvetnić M, Zokić TI, Miletić B, Leko T, Bulatović Bulatović OV (2020) Obrada aktivnog mulja s uređaja za pročišćavanje komunalnih otpadnih voda procesom kompostiranja. Hrvatske vode 28:1–8

    Google Scholar 

  41. Grgić KD, Domanovac VM, Domanovac T, Šabić M, Cvetnić M, Bulatović OV (2019) Influence of bacillus subtilis and pseudomonas aeruginosa bsw and clinoptilolite addition on the biowaste composting process. Arab J Sci Eng 44:5399–5409. https://doi.org/10.1007/s13369-018-03692-8

    Article  CAS  Google Scholar 

  42. Kučić D, Kopčić N, Briški F (2013) Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste. Chem Pap 67:1–8. https://doi.org/10.2478/s11696-013-0322-z

    Article  CAS  Google Scholar 

  43. Haug RT (1993) The practical handbook of compost engineering, Boca Raton Lewis.

  44. Plachá D, Raclavská H, Kučerová M, Kuchačrová J (2013) Volatile fatty acid evolution in biomass mixture composts prepared in open and closed bioreactors. Waste Manag 33:1104–1112. https://doi.org/10.1016/j.wasman.2013.01.021

    Article  CAS  PubMed  Google Scholar 

  45. Herner Ž, Kučić D, Zelić B (2017) Biodegradation of imidacloprid by composting process. Chem Pap 71:13–20. https://doi.org/10.1007/s11696-016-0031-5

    Article  CAS  Google Scholar 

  46. Vague M, Chan G, Roberts C, Swartz NA, Mellies JL (2019) Pseudomonas isolates degrade and form biofilms on polyethylene terephthalate (PET) plastic. bioRxiv, 647321. doi: https://doi.org/10.1101/647321

  47. Awasthi S, Srivastava N, Singh T, Tiwary D, Mishra PK (2017) Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS . 3. Biotech 7:73. https://doi.org/10.1007/s13205-017-0699-4

    Article  Google Scholar 

  48. Pravilnik o nusproizvodima i ukidanju statusa otpada (2020) NN 117/2014. https://narodne-novine.nn.hr/clanci/sluzbeni/2014_10_117_2217.html. Accessed 3 Dec 2020

  49. Robledo MT, Martín MA, Gutiérrez MC, Toledo M, González I, Aranda E, Chica AF, Calvo C (2019) Sewage sludge composting under semi-permeable film at full-scale: evaluation of odour emissions and relationships between microbiological activities and physico-chemical variables. Environ Res 177:108624. https://doi.org/10.1016/j.envres.2019.108624

    Article  CAS  Google Scholar 

  50. Hoque ME, Ye TJ, Yong LC, Dahlan KZM (2013) Sago starch-mixed low-density polyethylene biodegradable polymer: synthesis and characterization. J Mater. https://doi.org/10.1155/2013/365380

    Article  Google Scholar 

  51. Johnson KE, Pometto AL, Nikolov ZL (1993) Degradation of degradable starch-polyethylene plastics in a compost environment. Appl Environ Microbiol 59:1155–1161. https://doi.org/10.1128/aem.59.4.1155-1161.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Karimi M, Biria D (2019) The promiscuous activity of alpha-amylase in biodegradation of low-density polyethylene in a polymer-starch blend. Sci Rep 9:2612. https://doi.org/10.1038/s41598-019-39366-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mierzwa-Hersztek M, Gondek K, Kopeć M (2019) Degradation of polyethylene and biocomponent-derived polymer materials: an overview. J Polym Environ 27:600–611. https://doi.org/10.1007/s10924-019-01368-4

    Article  CAS  Google Scholar 

  54. Bikiaris D (1998) LDPE/starch blends compatibilized with PE-g-MA copolymers. Appl Polym Sci 70:1503–1521. https://doi.org/10.1002/(SICI)1097-4628(19981121)70:8%3c1503::AID-APP9%3e3.0.CO;2-%23

    Article  CAS  Google Scholar 

  55. Abioye AA, Oluwadare OP, Abioye OP (2019) Environmental impact on biodegradation speed and biodegradability of polyethylene and ipomoea batatas starch blend. Int J Eng Res 41:145–154. https://doi.org/10.4028/www.scientific.net/JERA.41.145

    Article  Google Scholar 

  56. Abioye AA, Obuekwe CC (2020) Investigation of the biodegradation of low-density polyethylene-starch Bi-polymer blends. Results Eng 5:100090. https://doi.org/10.1016/j.rineng.2019.100090

    Article  Google Scholar 

  57. Bikiaris D, Prinos J, Koutsopoulos K, Vouroutzis N, Pavlidou E, Frangi N (1998) Panayiotou, C (1998) LDPE/plasticized starch blends containing PE-g-MA copolymer as compatibilizer. Polym Degrad Stab 59:287–291. https://doi.org/10.1016/S0141-3910(97)00126-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by the projects: Advanced Water Treatment Technologies for Microplastics Removal (AdWaTMiR) IP-2019-04 of the Croatian Science Foundation and SLIPPERY SLOPE UIP-2019-02-2367 of the Croatian Science Foundation and PV-WALL PZS-2019-02-1555 in Research Cooperability Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Programme Efficient Human Resources 2014-2020.

Funding

This work has been funded by the projects: Advanced Water Treatment Technologies for Microplastics Removal (AdWaTMiR) IP-2019–04 of the Croatian Science Foundation and SLIPPERY SLOPE UIP-2019–02-2367 of the Croatian Science Foundation and PV-WALL PZS-2019–02-1555 in Research Cooperability Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Programme Efficient Human Resources 2014–2020.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [VOB], [DKG], [VM], [MM], [JD], [VG] and [MS]. The first draft of the manuscript was written by [VOB and DKG], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vesna Ocelić Bulatović.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 129 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulatović, V.O., Grgić, D.K., Mandić, V. et al. Biodegradation of LDPE_TPS blends under controlled composting conditions. Polym. Bull. 80, 3331–3357 (2023). https://doi.org/10.1007/s00289-021-03982-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03982-6

Keywords

Navigation