Skip to main content
Log in

Effects of different iodide salts on the electrical and electrochemical properties of hybrid biopolymer electrolytes for dye-sensitized solar cells application

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Biopolymer hybrid electrolytes based on carboxymethyl kappa-carrageenan/carboxymethyl cellulose doped with various cation sizes of iodide salts were prepared using the solution casting method. Lithium iodide, sodium iodide, ammonium iodide, and N–N-Dimethyl-N-(methyl-sulfanylmethylene) ammonium iodide are the doping salts used in this work. The Fourier transform infrared spectra and thermal analysis of all four systems prove the occurrence of complexation between the host polymer and the iodide salts. Impedance study showed that the ionic conductivity increased with an increase in salt concentration. The highest ionic conductivities were 3.89 × 10–3 S cm−1, 4.55 × 10–3 S cm−1, 2.41 × 10–3 S cm−1 and 6.68 × 10–3 S cm−1 for biopolymer hybrid systems containing lithium iodide (30 wt%), sodium iodide (30 wt%), ammonium iodide (30 wt%) and N–N-Dimethyl-N-(methyl-sulfanylmethylene) ammonium iodide (40 wt%). The temperature-dependent conductivity study revealed that all of the carboxymethyl kappa-carrageenan/carboxymethyl cellulose hybrid-based electrolytes followed the Vogel-Tamman-Fulcher model conductivity-temperature behavior. The dye-sensitized solar cell fabricated (DSSC) with carboxymethyl kappa-carrageenan/carboxymethyl cellulose-40 wt% of N–N-Dimethyl-N-(methyl-sulfanylmethylene) ammonium iodide electrolyte showed good response under light intensity of 100 mW cm−2 and exhibited the highest efficiency of 0.21%, confirming that hybrid biopolymer systems can potentially be used for the fabrication of efficient DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fenton D (1973) Complexes of alkali metal ions with poly (ethylene oxide). Polymer 14:589

    Article  CAS  Google Scholar 

  2. Wright PV (1975) Electrical conductivity in ionic complexes of poly (ethylene oxide). Br Polym J 7(5):319–327

    Article  CAS  Google Scholar 

  3. Armand M, Chabagno J, Duclot M (1979) Fast ion transport in solids. Eds. Vashishta P, Mundy JN & Shenoy GK. North Holland, Amsterdan, p 52

  4. Rani MSA, Sainorudin MH, Asim N, Mohammad M (2020) Formation of biopolymer electrolyte by interaction between carboxymethyl cellulose and NaCH3COO and its Na+ ion transport properties. Int J Electrochem Sci 15:11833–11844

    Article  CAS  Google Scholar 

  5. Torres FG, Arroyo J, Alvarez R, Rodriguez S, Troncoso O, López D (2019) Carboxymethyl κ/ι-hybrid carrageenan doped with NH4I as a template for solid bio-electrolytes development. Mater Chem Phys 223:659–665

    Article  CAS  Google Scholar 

  6. Rahman NA, Hanifah SA, Mobarak NN, Ahmad A, Ludin NA, Bella F, Su’ait MS (2021) Chitosan as a paradigm for biopolymer electrolytes in solid-state dye-sensitised solar cells. Polymer 230:124092

    Article  CAS  Google Scholar 

  7. Rani MSA, Hassan NH, Ahmad A, Kaddami H, Mohamed NS (2016) Investigation of biosourced carboxymethyl cellulose-ionic liquid polymer electrolytes for potential application in electrochemical devices. Ionics 22(10):1855–1864

    Article  CAS  Google Scholar 

  8. Isa MIN, Sohaimy MH, Ahmad NH (2021) Carboxymethyl cellulose plasticized polymer application as bio-material in solid-state hydrogen ionic cell. Int J Hydrogen Energy 46(11):8030–8039

    Article  CAS  Google Scholar 

  9. Kamarudin KH, Rani MSA, Isa MIN (2015) Ionic conductivity and conduction mechanism of biodegradable dual polysaccharides blend electrolytes. American-Eurasian Journal of Sustainable Agriculture, 8–15

  10. Sun B, Mindemark J, Edström K, Brandell D (2014) Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics 262:738–742

    Article  CAS  Google Scholar 

  11. Rani MSA, Mohammad M, Sua’it MS, Ahmad A, Mohamed NS (2020) Novel approach for the utilization of ionic liquid-based cellulose derivative biosourced polymer electrolytes in safe sodium-ion batteries. Polym Bull 78(9):5355–5377

    Article  Google Scholar 

  12. Rani MSA, Rudhziah S, Ahmad A, Mohamed NS (2014) Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers 6(9):2371–2385

    Article  Google Scholar 

  13. Rani MSA, Abdullah NA, Sainorudin MH, Mohammad M, Ibrahim S (2021) The development of poly (ethylene oxide) reinforced with a nanocellulose-based nanocomposite polymer electrolyte in dye-sensitized solar cells. Mater Adv 2(16):5465–5470

    Article  CAS  Google Scholar 

  14. Dzulkurnain NA, Rani MSA, Ahmad A, Mohamed NS (2018) Effect of lithium salt on physicochemical properties of P (MMA-co-EMA) based copolymer electrolytes for dye-sensitized solar cell application. Ionics 24(1):269–276

    Article  CAS  Google Scholar 

  15. Aziz SB, Brza M, Hamsan M, Kadir M, Muzakir S, Abdulwahid RT (2020) Effect of ohmic-drop on electrochemical performance of EDLC fabricated from PVA: dextran: NH4I based polymer blend electrolytes. J Market Res 9(3):3734–3745

    CAS  Google Scholar 

  16. Aziz SB, Brza M, Mishra K, Hamsan M, Karim WO, Abdullah RM, Kadir M, Abdulwahid RT (2020) Fabrication of high performance energy storage EDLC device from proton conducting methylcellulose: Dextran polymer blend electrolytes. J Market Res 9(2):1137–1150

    CAS  Google Scholar 

  17. Bhattacharya B, Lee JY, Geng J, Jung H-T, Park J-K (2009) Effect of cation size on solid polymer electrolyte based dye-sensitized solar cells. Langmuir 25(5):3276–3281

    Article  CAS  Google Scholar 

  18. Khanmirzaei M, Ramesh S, Ramesh K (2015) Effect of different iodide salts on ionic conductivity and structural and thermal behavior of rice-starch-based polymer electrolytes for dye-sensitized solar cell application. Ionics 21(8):2383–2391

    Article  CAS  Google Scholar 

  19. Tranquilan-Aranilla C, Nagasawa N, Bayquen A, Rosa AD (2012) Synthesis and characterization of carboxymethyl derivatives of kappa-carrageenan. Carbohyd Polym 87(2):1810–1816

    Article  CAS  Google Scholar 

  20. Ali A, Subban R, Bahron H, Winie T, Latif F, Yahya M (2008) Grafted natural rubber-based polymer electrolytes: ATR-FTIR and conductivity studies. Ionics 14(6):491–500

    Article  CAS  Google Scholar 

  21. Kim JH, Min BR, Won J, Kang YS (2003) Analysis of the glass transition behavior of polymer− salt complexes: an extended configurational entropy model. J Phys Chem B 107(24):5901–5905

    Article  CAS  Google Scholar 

  22. Rani MSA, Dzulkurnain NA, Ahmad A, Mohamed NS (2015) Conductivity and dielectric behavior studies of carboxymethyl cellulose from kenaf bast fiber incorporated with ammonium acetate-BMATFSI biopolymer electrolytes. Int J Polym Anal Charact 20(3):250–260

    Article  CAS  Google Scholar 

  23. Noor SA, Ahmad A, Talib I, Rahman MYA (2010) Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte. Ionics 16(2):161–170

    Article  CAS  Google Scholar 

  24. Dey A, Karan S, Dey A, De S (2011) Structure, morphology and ionic conductivity of solid polymer electrolyte. Mater Res Bull 46(11):2009–2015

    Article  CAS  Google Scholar 

  25. Sua’it MS, Ahmad A, Hamzah H, Rahman MYA (2011) Effect of lithium salt concentrations on blended 49% poly (methyl methacrylate) grafted natural rubber and poly (methyl methacrylate) based solid polymer electrolyte. Electrochim Acta 57:123–131

    Article  Google Scholar 

  26. Johansson A, Gogoll A, Tegenfeldt J (1996) Diffusion and ionic conductivity in Li (CF3SO3) PEG10 and LiN (CF3SO2)2PEG10. Polymer 37(8):1387–1393

    Article  CAS  Google Scholar 

  27. Singh M, Singh VK, Surana K, Bhattacharya B, Singh PK, Rhee H-W (2013) New polymer electrolyte for electrochemical application. J Ind Eng Chem 19(3):819–822

    Article  CAS  Google Scholar 

  28. Rani MSA, Isa NS, Sainorudin MH, Abdullah NA, Mohammad M, Asim N, Razali H, Ibrahim MA (2021) Magnesium ion-conducting biopolymer electrolytes based on carboxymethyl cellulose derived from palm oil empty fruit bunch fibre. Int J Electrochem Sci 16(210354):210354

    Article  CAS  Google Scholar 

  29. Rani MSA, Mohamed N, Isa MIN (2016) Characterization of proton conducting carboxymethyl cellulose/chitosan dual-blend based biopolymer electrolytes. In Materials Science Forum. Trans Tech Publ

  30. Kumar M, Tiwari T, Srivastava N (2012) Electrical transport behavior of bio-polymer electrolyte system: Potato starch+ ammonium iodide. Carbohyd Polym 88(1):54–60

    Article  CAS  Google Scholar 

  31. Liew C-W, Ramesh S, Arof AK (2014) Good prospect of ionic liquid based-poly (vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. Int J Hydrogen Energy 39(6):2953–2963

    Article  CAS  Google Scholar 

  32. Nadimicherla R, Kalla R, Muchakayala R, Guo X (2015) Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO: KI). Solid State Ionics 278:260–267

    Article  CAS  Google Scholar 

  33. Rani MSA, Isa NS, Sainorudin MH, Abdullah N, Mohammad M, Asim N, Razali H, Ibrahim MA (2021) Magnesium ion-conducting biopolymer electrolytes based on carboxymethyl cellulose derived from palm oil empty fruit bunch fibre. International Journal of Electrochemical Science, 16(3)

  34. Aziz SB, Hamsan M, Abdullah RM, Abdulwahid RT, Brza M, Marif AS, Kadir M (2020) Protonic EDLC cell based on chitosan (CS): Methylcellulose (MC) solid polymer blend electrolytes. Ionics, 1–12

  35. Gupta H, Balo L, Singh VK, Singh SK, Tripathi AK, Verma YL, Singh RK (2017) Effect of temperature on electrochemical performance of ionic liquid based polymer electrolyte with Li/LiFePO4 electrodes. Solid State Ionics 309:192–199

    Article  CAS  Google Scholar 

  36. Aziz SB, Brza M, Hamsan H, Kadir M, Abdulwahid RT (2021) Electrochemical characteristics of solid state double-layer capacitor constructed from proton conducting chitosan-based polymer blend electrolytes. Polym Bull 78(6):3149–3167

    Article  CAS  Google Scholar 

  37. Bella F, Sacco A, Pugliese D, Laurenti M, Bianco S (2014) Additives and salts for dye-sensitized solar cells electrolytes: what is the best choice? J Power Sources 264:333–343

    Article  CAS  Google Scholar 

  38. Kim D-W, Jeong Y-B, Kim S-H, Lee D-Y, Song J-S (2005) Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte. J Power Sources 149:112–116

    Article  CAS  Google Scholar 

  39. Rahman MYA, Ahmad A, Umar A, Taslim R, Su’ait MS, Salleh M, (2014) Polymer electrolyte for photoelectrochemical cell and dye-sensitized solar cell: a brief review. Ionics 20(9):1201–1205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial supports from Universiti Teknologi MARA, Fundamental Research Grant Scheme (FRGS) [File No.: 600-IRMI/FRGS 5/3 (342/2019)] and Ministry of Higher of Higher Education (MOHE) provided for this work.

Funding

Universiti Teknologi MARA, Fundamental Research Grant Scheme (FRGS), 600-IRMI/FRGS 5/3 (342/2019), Siti Rudhziah.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. A. Rani or S. Rudhziah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, M.S.A., Rudhziah, S., Ahmad, A. et al. Effects of different iodide salts on the electrical and electrochemical properties of hybrid biopolymer electrolytes for dye-sensitized solar cells application. Polym. Bull. 79, 9813–9832 (2022). https://doi.org/10.1007/s00289-021-03980-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03980-8

Keywords

Navigation