Skip to main content
Log in

Studies of mechanical, electrical and electromagnetic properties of polyester/PANI conductive fabric composites based on different type of stabilizers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Changing parameters such as: concentration, type and molecular weight of stabilizer, has made possible the control of size and nanoparticles distribution, and thus impacting the final application properties. Ammonium peroxydisulfate is currently used as a conventional oxidizing agent in aniline polymerization is always; however, it results an insoluble, infusible polymer, which is not easily to handle. Hence, rise the approach of using steric stabilizers to overcome of processability and manipulation problems, by a formation of a colloidal dispersion. In this work, the fabrication of polyester/PANI conductive composites was synthesized using in situ polymerization in the organic solution of Para-toluene sulfonic acid-Sodium dodecyl sulfate (TSA-SDS) with ammonium peroxydisulfate as oxidant, in the presence of different type of stabilizer (solid and liquid). These polyester/PANI composites are developed to achieve protection against electromagnetic rays. Polyanilines were characterized using attenuated total reflectance-Fourier transform infrared (ATR-FTIR), RAMAN spectroscopy, and a standard electrical resistance four-probe method, and the composites were characterized using mechanical properties (tensile strength test), electrical (Surface resistivity) and electromagnetic (shielding effectiveness) measurements and scanning electron microscopy observations. The addition of stabilizer increased the conductivity of polyaniline and the polyester/PANI composite. In addition, the tensile strength of conductive polyester/PANI fibers increased. EMI shielding studies of the conducting polyaniline-coated polyester fabrics showed a shielding effectiveness value between 26.69 and 39.12 dB and were obtained in the frequency range 9.45 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ayesha K (2017) Overview on conducting polymer in energy storage and energy conversion system. J Macromolecul Sci A 54:640–653. https://doi.org/10.1080/10601325.2017.1317210

    Article  CAS  Google Scholar 

  2. Ayesha K (2020) High-performance competence of polyaniline-based nanomaterials. Mater Res Innov 24:113–122. https://doi.org/10.1080/14328917.2019.1611253

    Article  CAS  Google Scholar 

  3. Stejskal J, Sapurina I (2005) Polyaniline: thin films and colloidal dispersions (IUPAC technical report). Pure Appl Chem 77:815–826. https://doi.org/10.1351/pac200577050815

    Article  CAS  Google Scholar 

  4. Abel SB, Yslas EI, Rivarola CR, Barbero CA (2018) Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect. Nanotechnology. https://doi.org/10.1088/1361-6528/aaa99a

    Article  PubMed  Google Scholar 

  5. Blinova NV, Stejskal J, Trchová M, Prokeš J (2006) Polyaniline prepared in solutions of phosphoric acid: powders, thin films, and colloidal dispersions. Polymer 47:42–48. https://doi.org/10.1016/j.polymer.2005.10.145

    Article  CAS  Google Scholar 

  6. Armes SP, Miller JF (1988) Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate. Synth Met 22:385–393. https://doi.org/10.1016/0379-6779(88)90109-9

    Article  CAS  Google Scholar 

  7. Reza M, Srikandi N, Amalina AN, Benu DP, Steky FV, Rochliadi A, Suendo V (2019) Variation of ammonium persulfate concentration determines particle morphology and electrical conductivity in HCl doped polyaniline. IOP Conf Series: Mater Sci Eng. https://doi.org/10.1088/1757-899X/599/1/012002

    Article  Google Scholar 

  8. Eisazadeh H, Spinks G, Wallace G (1995) Electrodeposition of polyaniline and polyaniline composites from colloidal dispersions. Polym Inter 37:87–91. https://doi.org/10.1002/pi.1995.210370201

    Article  CAS  Google Scholar 

  9. Armes SP, Aldissi M (1989) Novel colloidal dispersons of polyaniline. J Chem Soc Chem Commun 2:88–89. https://doi.org/10.1039/C39890000088

    Article  Google Scholar 

  10. Gospodinova N, Mokreva P, Tsanov T, Terlemezyan L (1997) A new route to polyaniline composites. Polymer 38:743–746. https://doi.org/10.1016/s0032-3861(96)00698-2

    Article  CAS  Google Scholar 

  11. Stejskal J et al (1999) Polyaniline dispersions 8. Control Part Morphol Polym 40:2487–2492. https://doi.org/10.1016/s0032-3861(98)00478-9

    Article  CAS  Google Scholar 

  12. Zhang Z, Wei Z, Zhang L, Wan M (2005) Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids. Acta Mater 53:1373–1379. https://doi.org/10.1016/j.actamat.2004.11.030

    Article  CAS  Google Scholar 

  13. Kohut-Svelko N, Reynaud S, François J (2005) Synthesis and characterization of polyaniline prepared in the presence of nonionic surfactants in an aqueous dispersion. Synth Met 150:107–114. https://doi.org/10.1016/j.synthmet.2004.12.022

    Article  CAS  Google Scholar 

  14. Ray DK, Himanshu AK, Sinha TP (2005) Study of impedance spectroscopy conducting polymer prepared with the use of water soluble support polymer. Ind J P Appl Phys 43:787–793

    CAS  Google Scholar 

  15. Cho MS, Park SY, Hwang JY, Choi HJ (2004) Synthesis and electrical properties of polymer composites with polyaniline nanoparticles. Mat Sci Eng C 24:15–18. https://doi.org/10.1016/j.msec.2003.09.003

    Article  CAS  Google Scholar 

  16. Gu L, Zhao X, Tong X, Chen JMB, Liu S, Zhao H, Yu H, Chen J (2016) Facile preparation of polyaniline nanoparticles and their dispersion for waterborne anticorrosion coatings. Int J Electrochem Sci 11:1621–1631

    CAS  Google Scholar 

  17. Ruecha N, Rangkupan R, Rodthongkum N, Chailapakul O (2014) Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens Bioelectron 52:13–19. https://doi.org/10.1016/j.bios.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  18. Banerjee P, Bhattacharyya SN, Mandal BM (1995) Poly(vinyl methyl ether) stabilized colloidal polyaniline dispersions. Langmuir 11:2414–2418. https://doi.org/10.1021/la00007a017

    Article  CAS  Google Scholar 

  19. Di Tullio BT, Wright CJ, Hayes P, Molino PJ, Hanks TW (2018) Surface modification of polyaniline nanorods with thiol-terminated poly(ethylene oxide). Colloid Polym Sci 296:637–645. https://doi.org/10.1007/s00396-018-4278-y

    Article  CAS  Google Scholar 

  20. Hansen B, Ferreira CA (2016) A facile and simple polyaniline-poly(ethylene oxide) based glucose biosensor. Synth Met 222:224–231. https://doi.org/10.1016/j.synthmet.2016.10.028

    Article  CAS  Google Scholar 

  21. Hazira Hussin SN, Gan SM, Phang SW (2017) Synthesis of water-soluble polyaniline by using different types of cellulose derivatives. Polym Polym Comp 25:515–520. https://doi.org/10.1177/096739111702500702

    Article  Google Scholar 

  22. Li X-G et al (2004) The preparation of polyaniline waterborne latex nanoparticles and their films with anti-corrosivity and semi-conductivity. Colloids Surf, A 248:111–120. https://doi.org/10.1016/j.colsurfa.2004.08.077

    Article  CAS  Google Scholar 

  23. Güizado-Rodríguez M, López-Tejeda M, Escalante J, Guerrero-Álvarez JA, Nicho ME (2010) Photosensitive polyaniline colloidal particles prepared by enzymatic polymerization using the azopolymer DMA-co-AZAAm as stabilizer. Mat Chem Phys 124:389–394. https://doi.org/10.1016/j.matchemphys.2010.06.052

    Article  CAS  Google Scholar 

  24. Cruz-Silva R, Escamilla A, Nicho ME, Padron G (2007) Enzymatic synthesis of pH-responsive polyaniline colloids by using chitosan as steric stabilizer. Eur Polym J 43:3471–3479. https://doi.org/10.1016/j.eurpolymj.2007.05.027

    Article  CAS  Google Scholar 

  25. Koo CM, Jeon BH, Chung IJ (2000) The effect of poly(methyl vinyl ether-alt-maleic acid) stabilizer on the stability of polyaniline-poly(methyl vinyl ether-alt-maleic acid) dispersions. J Colloid Interface Sci 227:316–321. https://doi.org/10.1006/jcis.2000.6898

    Article  CAS  PubMed  Google Scholar 

  26. Wu L, Ge Y, Zhang L, Yu D, Wu M, Ni H (2018) Enhanced electrical conductivity and competent mechanical properties of polyaniline/polyacrylate (PANI/PA) composites for antistatic finishing prepared at the aid of polymeric stabilizer. Prog Org Coat 125:99–108. https://doi.org/10.1016/j.porgcoat.2018.09.002

    Article  CAS  Google Scholar 

  27. Li Y, Jing X (2009) Morphology control of chemically prepared polyaniline nanostructures: effects of mass transfer. React Funct Polym 69:797–807. https://doi.org/10.1016/j.reactfunctpolym.2009.06.009

    Article  CAS  Google Scholar 

  28. Riede A, Helmstedt M, Riede V, Stejskal J (1998) Polyaniline Dispersions. 9. Dynamic light scattering study of particle formation using different stabilizers. Langmuir 14:6767–6771. https://doi.org/10.1021/la980365l

    Article  CAS  Google Scholar 

  29. Liu Y, Chu Y, Yang L (2006) Adjusting the inner-structure of polypyrrole nanoparticles through microemulsion polymerization. Mat Chem Phys 98:304–308. https://doi.org/10.1016/j.matchemphys.2005.09.025

    Article  CAS  Google Scholar 

  30. Reung-u-rai A, Prom-Jun A, Prissanaroon-ouajai W, Ouajai S (2008) Synthesis of highly conductive polypyrrole nanoparticles via microemulsion polymerization. J Met Mater Miner 18:27–31

    Google Scholar 

  31. Bounedjar M, Naar N, Mekki A (2021) Kinetic study of the effect of the micellar concentration of sodium dodecyl sulfate on the spectroscopic, morphological and electrical characteristics of a polyaniline prepared by a hybrid micro-nanoemulsion bi-micellar polymerization technique. J Macromol Sci Phys 60:190–219. https://doi.org/10.1080/00222348.2020.1843849

    Article  CAS  Google Scholar 

  32. Bounedjar M, Naar N, Mekki A (2020) Hybrid micro-emulsion of aniline in sodium dodecyl sulfate micellar solution and sulfonic acids: morphology, electrical, thermal and kinetic studies. J Polym Res 27:1–15. https://doi.org/10.1007/s10965-020-02099-0

    Article  CAS  Google Scholar 

  33. Marie E, Rothe R, Antonietti M, Landfester K (2003) Synthesis of polyaniline particles via inverse and direct miniemulsion. Macromolecules 36:3967–3973. https://doi.org/10.1021/ma0257550

    Article  CAS  Google Scholar 

  34. Huang WS, MacDiarmid AG (1993) Optical properties of polyaniline. Polymer 34:1833–1845. https://doi.org/10.1016/0032-3861(93)90424-9

    Article  CAS  Google Scholar 

  35. Misoon O, Seok K (2012) Effect of dodecyl benzene sulfonic acid on the preparation of polyaniline/activated carbon composites by in situ emulsion polymerization. Electrochim Acta 59:196–201. https://doi.org/10.1016/j.electacta.2011.10.058

    Article  CAS  Google Scholar 

  36. Sperline RP (1997) Infrared spectroscopic study of the crystalline phases of sodium dodecyl sulfate. Langmuir 13:3715–3726. https://doi.org/10.1021/la9702087

    Article  CAS  Google Scholar 

  37. Cruz-Silva R, Angulo-Sanchez JL, Flores-Loyola E, Farıas MH, Castillon FF, Dıaz JA (2004) Comparative study of polyaniline cast films prepared from enzymatically and chemically synthesized polyaniline. Polymer 45:4711–4717. https://doi.org/10.1016/j.polymer.2004.05.007

    Article  CAS  Google Scholar 

  38. Ferreira DC, Pires JR, Temperini MLA (2011) Spectroscopic characterization of oligoaniline microspheres obtained by an aniline-persulfate approach. J Phys Chem B 115:1368–1375. https://doi.org/10.1021/jp111065m

    Article  CAS  PubMed  Google Scholar 

  39. Wang D, Caruso F (2001) Fabrication of polyaniline inverse opals via templating ordered colloidal assemblies. Adv Mater 13:350–354. https://doi.org/10.1002/1521-4095(200103)13:5%3c350::AID-ADMA350%3e3.0.CO;2-X

    Article  CAS  Google Scholar 

  40. Stejskal J, Trchová M (2012) Aniline oligomers versus polyaniline. Polym Inter 61:240–251. https://doi.org/10.1002/pi.3179

    Article  CAS  Google Scholar 

  41. Huang J, Wan M (1999) Polyaniline doped with different sulfonic acids by in situ doping polymerization. J Polym Sci A: Polym Chem 37:1277–1284. https://doi.org/10.1002/(sici)1099-0518(19990501)37:9%3c1277::aid-pola7%3e3.0.co;2-a

    Article  CAS  Google Scholar 

  42. Trchová M, Morávková Z, Bláha M, Stejskal J (2014) Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim Acta 122:28–38. https://doi.org/10.1016/j.electacta.2013.10.133

    Article  CAS  Google Scholar 

  43. Boddula R, Srinivasan P (2015) Role of dual dopants in highly ordered crystalline polyaniline nanospheres: electrode materials in supercapacitors. J Appl Polym Sci 42510:1–7. https://doi.org/10.1002/app.42510

    Article  CAS  Google Scholar 

  44. Liu H, Hu XB, Wang JY, Boughton RI (2002) Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method. Macromolecules 35:9414–9419. https://doi.org/10.1021/ma0119326

    Article  CAS  Google Scholar 

  45. Jeevananda T, Lee JH, Siddaramaiah (2008) Preparation of polyaniline nanostructures using sodium dodecylsulphate. Mater Lett 62:3995–3998. https://doi.org/10.1016/j.matlet.2008.05.041

    Article  CAS  Google Scholar 

  46. Zeng X-R, Ko T-M (1998) Structures and properties of chemically reduced polyanilines. Polymer 39:1187–1195. https://doi.org/10.1016/s0032-3861(97)00381-9

    Article  CAS  Google Scholar 

  47. Stejskal J, Exnerová M, Morávková Z, Trchová M, Hromádková J, Prokes J (2012) Oxidative stability of polyaniline. Polym Degrad Stab 97:1026–1033. https://doi.org/10.1016/j.polymdegradstab.2012.03.006

    Article  CAS  Google Scholar 

  48. Kellenberger A, Dmitrieva E, Dunsch L (2012) Structure dependence of charged states in “linear” polyaniline as studied by in situ ATR-FTIR spectroelectrochemistry. J Phys Chem B 116:4377–4385. https://doi.org/10.1021/jp211595n

    Article  CAS  PubMed  Google Scholar 

  49. Mazzeu AC, Faria LK, Baldan MR, Rezende MC, Gonçalves ES (2018) Influence of reaction time on the structure of polyaniline synthesized on a pre-pilot scale. Braz J Chem Eng 35:123–130. https://doi.org/10.1590/0104-6632.20180351s20160201

    Article  CAS  Google Scholar 

  50. Ćirić-Marjanović G, Trchová M, Stejskal J (2008) The chemical oxidative polymerization of aniline in water. Raman Spectrosc 39:1375–1387. https://doi.org/10.1002/jrs.2007

    Article  CAS  Google Scholar 

  51. Ćirić-Marjanović G, Trchová M, Stejskal J (2008) Theoretical study of the oxidative polymerization of aniline with peroxydisulfate: tetramer formation. Int J Quantum Chem 108:318–333. https://doi.org/10.1002/qua.21506

    Article  CAS  Google Scholar 

  52. Pereira da Silva JE, de Faria DLA, Cordoba de Torresi SI, Temperini MLA (2000) Influence of thermal treatment on doped polyaniline studied by resonance raman spectroscopy. Macromolecules 33:3077–3083. https://doi.org/10.1021/ma990801q

    Article  CAS  Google Scholar 

  53. Panicker CY, Varghese HT, Anto PL, Philip D (2006) Potential dependent SERS profile of sulfanilic acid on silver electrode. J Raman Spectrosc 37:853–857. https://doi.org/10.1002/jrs.1516

    Article  CAS  Google Scholar 

  54. Nascimento GMD, Constantino VRL, Temperini LA (2002) Spectroscopic characterization of a new type of conducting polymer-clay nanocomposite. Macromolecules 35:7535–7537. https://doi.org/10.1021/ma025571l

    Article  CAS  Google Scholar 

  55. Bilal S, Shah A-U-H (2015) Calculation of particle size distribution of polyaniline salts using image J. J Sci Innov Res 4:17–21

    Article  Google Scholar 

  56. Candau F (1995) Recent developments in microemulsion copolymerization. Macromol Symp 92:169–178. https://doi.org/10.1002/masy.19950920115

    Article  CAS  Google Scholar 

  57. Motheo A, Santos JR Jr, Venancio EC, Mattoso LHC (1998) Influence of different types of acidic dopant on the electrodeposition and properties of polyaniline films. Polymer 39:6977–6982. https://doi.org/10.1016/s0032-3861(98)00086-x

    Article  CAS  Google Scholar 

  58. Cooper EC, Vincent B (1989) Electrically conducting organic films and beads based on conducting latex particles. J Phys D 22:1580–1585. https://doi.org/10.1088/0022-3727/22/11/002

    Article  CAS  Google Scholar 

  59. Meng L, Lu Y, Wang X, Zhang J, Duan Y, Li C (2007) Facile synthesis of straight polyaniline nanostick in hydrogel. Macromolecules 40:2981–2983. https://doi.org/10.1021/ma062366n

    Article  CAS  Google Scholar 

  60. Kumar MNS, Iddaramaiah (2009) Mechanical and electrical properties of poalyaniline incorporated polyvinyl acetate-polyester nonwoven fabric composites. J Reinf Plast Compos 28:2287–2295. https://doi.org/10.1177/0731684408092068

    Article  CAS  Google Scholar 

  61. Neelakandan R, Giridev VR, Murugesan M, Madhusoothanan M (2009) Surface resistivity and shear characteristics of polyaniline coated polyester fabric. J Ind Text 39:175–186. https://doi.org/10.1177/1528083709103315

    Article  Google Scholar 

  62. Chen HC, Lee KC, Lin JH, Koch M (2007) Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation. J Mater Process Tech 184:124–130. https://doi.org/10.1016/j.jmatprotec.2006.11.030

    Article  CAS  Google Scholar 

  63. Muthukumar N, Thilagavathi G (2012) Development and characterization of electrically conductive polyaniline coated fabrics. Ind J Chem Technol 19:434–441

    CAS  Google Scholar 

  64. Muthukumar N, Govindarajan GT (2012) Surface resistivity and EMI shielding effectiveness of polyaniline coated polyester fabric. J Text Appar Technol Manag 7:1–6

    Google Scholar 

  65. Dhawan S, Singh N, Venkatachalam S (2002) Shielding behaviour of conducting polymer-coated fabrics in X-band, W-band and radio frequency range. Synth Met 129:261–267. https://doi.org/10.1016/S0379-6779(02)00079-6

    Article  CAS  Google Scholar 

  66. Bounedjar M, Naar N, Mekki A (2021) Semi-crystalline polyaniline with an enhanced conductivity synthesized with a novel binary dopant sulfonic acid- surfactant: mechanical, electrical and shielding performances of Nylon/PANI conductive fabrics at 9.45 GHz. J Macromol Sci Phys. https://doi.org/10.1080/00222348.2021.1894708

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful for the support provided from the Polytechnic Military School to grant the PhD-scholarship of Mr. Mohammed BOUNEDJAR, through the project N°273/19/DRFPG /CMDT, and they are thankful to the Directorate General for scientific Research and technological development for its support through providing chemicals products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nacira Naar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bounedjar, M., Mekki, A., Naar, N. et al. Studies of mechanical, electrical and electromagnetic properties of polyester/PANI conductive fabric composites based on different type of stabilizers. Polym. Bull. 79, 9609–9628 (2022). https://doi.org/10.1007/s00289-021-03965-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03965-7

Keywords

Navigation