Skip to main content

Advertisement

Log in

Ultrathin graphene oxide@polypyrrole nanosheets as a supercapacitor electrode with high areal specific capacitance

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Ultrathin graphene oxide@polypyrrole-1 (GO@PPy-1) nanosheets are successfully prepared by in situ chemical oxidative polymerization of pyrrole using GO/FeCl3 complexes as the oxidant and template. Pyrrole nanolayers are homogeneously coated on the GO, and both the inner and outer layer monomer can be oxidized by the free Fe3+ ions. The GO@PPy-1 exhibited higher areal specific capacitance (1532 mF cm−2 at 0.88 mA cm−2), better rate capability (capacitance retention rate of 41% from 0.88 to 44 mA cm−2) and excellent cycling stability (less than 10% capacity loss after 1000 cycles) in a three-electrode workstation. More important, the GO@PPy-1 assembled solid-state symmetrical supercapacitor showed high energy density of 114 µWh cm−2 at a power density of 500 µW cm−2 and high power of 20,000 µW cm−2 at an energy density of 70 µWh cm−2. The superior capacitive behavior could be attributed to the thinner PPy capping layer on the surface of GO. In addition, GO-grafted PPy can prevent the exfoliation of PPy during the charge–discharge process. Furthermore, the GO@PPy-1 showed better electrochemical performance compared to the GO@PPy-2 synthesized by the conventional way. The simple method opens up a new route to large-scale prepare graphene based conducting polymer materials for applications in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  PubMed  Google Scholar 

  2. Mohammad B, Elaheh K, Ali E, Amutha C, Seeram R, Raouf A (2021) Review on innovative sustainable nanomaterials to enhance the performance of supercapacitors. J Energy Storage 37:102474

    Article  Google Scholar 

  3. Pourbeyram S, Kheyri P (2018) Graphene/polypyrrole nanofifiber prepared by simple one step green method for electrochemical supercapacitors. Synth Met 238:22–27

    Article  CAS  Google Scholar 

  4. Fu H, Du Z-J, Zou W, Li H-Q, Zhang C (2013) Carbon nanotube reinforced polypyrrole nanowire network as a high-performance supercapacitor electrode. J Mater Chem A 1:14943–14950

    Article  CAS  Google Scholar 

  5. Rakhi R, Chen W, Alshareef H (2012) Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors. J Mater Chem 22:5177–5183

    Article  CAS  Google Scholar 

  6. Kumar A, Singh RK, Singh HK, Srivastava P, Singh R (2013) Enhanced capacitance and stability of p-toluenesulfonate doped polypyrrole/carbon composite for electrode application in electrochemical capacitors. J Power Sour 246:800–807

    Article  Google Scholar 

  7. Lee JW, Lee HI, Park S-J (2018) Facile synthesis of petroleum-based activated carbons/tubular polypyrrole composites with enhanced electrochemical performance as supercapacitor electrode materials. Electrochim Acta 263:447–453

    Article  CAS  Google Scholar 

  8. Lu Q, Liu J, Wang X, Lu B, Chen M, Liu M (2018) Construction and characterizations of hollow carbon microsphere@polypyrrole composite for the high performance supercapacitor. J Energy Storage 18:62–71

    Article  Google Scholar 

  9. Wang M, Zhang T, Cui M, Liu W, Liu X, Zhao J, Zhou J (2021) Sub-nanopores-containing N, O-codoped porous carbon from molecular-scale networked polymer hydrogel for solid-state supercapacitor. Chin Chem Lett 32:1111–1116

    Article  CAS  Google Scholar 

  10. Liu X, Xue L, Lu Y, Xia Y, Li Q (2020) Fabrication of polypyrrole/multi-walled carbon nanotubes composites as high performance electrodes for supercapacitors. J Electroanal Chem 862:114006

    Article  CAS  Google Scholar 

  11. Liu X, Zang L, Liang C, Liu Q, Deng Y, Yang C, Qiu J (2021) Design and fabrication of high performance flexible supercapacitor with polypyrrole@carbon fiber yarn electrode and redox active dopants. Synth Metals 271:116654

    Article  CAS  Google Scholar 

  12. Song P, Xi C, Premlatha S, Shen X, Ji Z, Yan Z, Yuan A, Kong L, Zhu G (2021) Sword/scabbard-shaped asymmetric all-solid-state supercapacitors based on PPy-MWCNTs-silk and hollow graphene tube for wearable applications. Chem Eng J 411:128522

    Article  CAS  Google Scholar 

  13. Tan YB, Lee J-M (2013) Graphene for supercapacitor applications. J Mater Chem A 1:14814–14843

    Article  CAS  Google Scholar 

  14. Biswas S, Drzal LT (2010) Multi layered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 22:5667–5671

    Article  CAS  Google Scholar 

  15. Liu G, Shi Y, Wang L, Song Y, Gao S, Liu D (2020) Reduced graphene oxide/polypyrrole composite: an advanced electrode for high-performance symmetric/asymmetric supercapacitor. Carbon Lett 30:389–397

    Article  Google Scholar 

  16. Xu CH, Sun J, Gao L (2011) Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance. J Mater Chem 21:11253–11258

    Article  CAS  Google Scholar 

  17. Yang B-J, Jiang L-L, Li Y-J, Cai F-G (2018) Three-dimensional porous biocarbon wrapped by graphene and polypyrrole composite as electrode materials for supercapacitor. J Mater Sci: Mater Electron 29:2568–2572

    CAS  Google Scholar 

  18. Chang HH, Chang CK, Tsai YC, Liao CS (2012) Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon 50:2331–2336

    Article  CAS  Google Scholar 

  19. Wang JP, Xu YL, Zhu JB, Ren PG (2012) Electrochemical in situ polymerization of reduced graphene oxide/polypyrrole composite with high power density. J Power Sour 208:138–143

    Article  CAS  Google Scholar 

  20. Zhou H, Han G, Xiao Y, Chang Y, Zhai H-J (2014) Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. J Power Sour 263:259–267

    Article  CAS  Google Scholar 

  21. Zhu CZ, Zhai JF, Wen D, Dong SJ (2012) Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem 22:6300–6306

    Article  CAS  Google Scholar 

  22. Bose S, Kuila T, Uddin ME, Kim NH, Lau AKT, Lee JH (2010) In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 51:5921–5928

    Article  CAS  Google Scholar 

  23. Luo ZM, Yuwen LH, Bao BQ, Tian J, Zhu XR, Weng LX, Wang LH (2012) One-pot, low-temperature synthesis of branched platinum nanowires/reduced graphene oxide (BPtNW/RGO) hybrids for fuel cells. J Mater Chem 22:7791–7796

    Article  CAS  Google Scholar 

  24. Li J, Zhang Y, Xie H, Li Y, Zhen C (2017) Electrochemical performance of polypyrrole nanorods/functionalized graphene composites for supercapacitors. J Solid State Electrochem 21:2201–2208

    Article  CAS  Google Scholar 

  25. Mao L, Zhang K, Chan HSO, Wu J (2012) Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J Mater Chem 22:80–85

    Article  CAS  Google Scholar 

  26. Devi M, Kumar A (2016) In-situ reduced graphene oxide nanosheets-polypyrrole nanotubes nanocomposites for supercapacitor applications. Synth Met 222:318–329

    Article  CAS  Google Scholar 

  27. Zhang LL, Zhao SY, Tian XN, Zhao XS (2010) Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes. Langmuir 26:17624–17628

    Article  CAS  PubMed  Google Scholar 

  28. Zhang J, Yu Y, Liu L, Wu Y (2013) Graphene–hollow PPy sphere 3D-nanoarchitecture with enhanced electrochemical performance. Nanoscale 5:3052–3057

    Article  CAS  PubMed  Google Scholar 

  29. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  30. Chen X, Xiao Z, Ning X, Liu Z, Yang Z, Zou C, Wang S, Chen X, Chen Y, Huang S (2014) Sulfur-impregnated, sandwich-type, hybrid carbon nanosheets with hierarchical porous structure for high-performance lithium-sulfur batteries. Adv Energy Mater 4:1301988

    Article  Google Scholar 

  31. Deng Y, Ji Y, Chen F, Ren F, Tan S (2020) Superior performance of flexible solid-state supercapacitors enabled by ultrafine graphene quantum dot-decorated porous carbon spheres. New J Chem 44:13591–13597

    Article  CAS  Google Scholar 

  32. Zhang M, Qu B, Lei D, Chen Y, Yu X, Chen L, Li Q, Wang Y, Wang T (2012) A green and fast strategy for the scalable synthesis of Fe2O3/graphene with significantly enhanced Li-ion storage properties. J Mater Chem 22:3868–3874

    Article  CAS  Google Scholar 

  33. Ma YW, Zhang DC, Zhang X, Chen Y, Yu P, Wang CH (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sour 196:5990–5996

    Article  Google Scholar 

  34. Wang Y, Zhang Y, Zhong W, Qing X, Zhou Q, Liu Q, Wang W, Liu X, Li M, Wang D (2018) Flexible supercapacitor with high energy density prepared by GO-induced porous coral-like polypyrrole (PPy)/PET non-woven fabrics. J Mater Sci 53:8409–8419

    Article  CAS  Google Scholar 

  35. Wang P, Zheng Y, Li B (2013) Preparation and electrochemical properties of polypyrrole/graphite oxide composites with various feed ratios of pyrrole to graphite oxide. Synth Met 166:33–39

    Article  CAS  Google Scholar 

  36. Liu Y, Wang H, Zhou J, Bian L, Zhu E, Hai J, Tang J, Tang W (2013) Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode. Electrochim Acta 112:44–52

    Article  CAS  Google Scholar 

  37. Wang W, Sadak O, Guan J, Gunasekaran S (2020) Facile synthesis of graphene paper/polypyrrole nanocomposite as electrode for flexible solid-state supercapacitor. J Energy Storage 30:101533

    Article  Google Scholar 

  38. Hu R, Shao D, Wang X (2014) Graphene oxide/polypyrrole composites for highly selective enrichment of U(VI) from aqueous solutions. Polym Chem 5:6207–6215

    Article  CAS  Google Scholar 

  39. Minisy IM, Acharya U, Kobera L, Trchova M, Unterweger C, Breitenbach S, Brus J, Pfleger J, Stejskal J, Bober P (2020) Highly conducting 1-D polypyrrole prepared in the presence of safranin. J Mater Chem C 8:12140–12147

    Article  Google Scholar 

  40. Wang J, Zhu W, Zhang T, Zhang L, Du T, Zhang W, Zhang D, Sun J, Yue T, Wang Y, Wang J (2020) Conductive polyaniline-graphene oxide sorbent for electrochemically assisted solid-phase extraction of lead ions in aqueous food samples. Anal Chim Acta 1100:57–65

    Article  CAS  PubMed  Google Scholar 

  41. Guo X, Bai N, Tian Y, Gai L (2018) Free-standing reduced graphene oxide/polypyrrole films with enhanced electrochemical performance for flexible supercapacitors. J Power Sour 408:51–57

    Article  CAS  Google Scholar 

  42. Sun F, Wang J, Chen H, Li W, Qiao W, Long D, Ling L (2013) High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries. ACS Appl Mater Interfaces 5:5630–5638

    Article  CAS  PubMed  Google Scholar 

  43. Han YQ, Hao LA, Zhang XG (2010) Preparation and electrochemical performances of graphite oxide/polypyrrole composites. Synth Met 160:2336–2340

    Article  CAS  Google Scholar 

  44. Liang X, Liu Y, Wen Z, Huang L, Wang X, Zhang H (2011) A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium–sulfur batteries. J Power Sour 196:6951–6955

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Project of Hunan Provincial Department of Education (20C1020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xutao Ning.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Ning, X. & Wan, L. Ultrathin graphene oxide@polypyrrole nanosheets as a supercapacitor electrode with high areal specific capacitance. Polym. Bull. 79, 9075–9091 (2022). https://doi.org/10.1007/s00289-021-03948-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03948-8

Keywords

Navigation