Skip to main content
Log in

Synthesis of bentonite-β-cyclodextrin-iron nanoparticles composite as a magnetic adsorbent in solid-phase extraction for separation of nicotinic acid N-methylbetaine: an optimized process

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Bentonite-β-cyclodextrin-iron nanoparticles (Ben-βCD-INP) composite was synthesized, characterized, and utilized like an innovative magnetic solid-phase extraction (MSPE) adsorbent to separate and preconcentrate nicotinic acid N-methylbetaine (NAMB). Experiment conditions to find important variables of NAMB adsorption on the Ben-βCD-INP were A: time (1–10 min), B: Adsorbent amount (0.01–0.1 g), C: pH (1–8), and for desorption were A: temperature (60–100 °C), B: concentration (0.8–1.2 M), C: time (5–15 min), and D: Volume (1–3 mL). The adsorbent contributes significantly in the extraction process. The INP in the nanocomposite makes it easy to remove the adsorbent with the help of a magnet. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), and X-ray diffraction (XRD) were used to characterize the synthesized adsorbent. Experimental design was used to optimize the factors affecting extraction. NAMB in plasma samples was extracted and evaluated by a reversed-phase HPLC–UV method. The findings have shown that MSPE was able to extract NAMB efficiently. The developed HPLC–UV procedure for the determination of NAMB in human plasma, showed linear relationship in the concentration interval of 20–10,000 ng/mL (r = 0. 9998) with the limit of detection (LOD), the limit of quantitation (LOQ) and recovery (%) of 5, 18 ng/mL, and 114%, respectively. The procedure was successfully used to determine the concentration of NAMB in human plasma. This study offers a promising hybrid nano-biomaterial adsorbent in biomedical nanotechnology to selective measurement of the drug or supplements such as NAMB from plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mohamadi N, Sharififar F, Pournamdari M, Ansari M (2018) A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid. J Dietary Supple 15(2):207–222

    Article  CAS  Google Scholar 

  2. Lorigooini Z, Sadeghi Dehsahraei K, Bijad E, Habibian Dehkordi S, Amini-Khoei H (2020) Trigonelline through the attenuation of oxidative stress exerts antidepressant- and anxiolytic-like effects in a mouse model of maternal separation stress. Pharmacology 105(5–6):289–299. https://doi.org/10.1159/000503728

    Article  CAS  PubMed  Google Scholar 

  3. Laila O, Murtaza I, Abdin MZ, Ahmad S, Khan MS (2019) Development and validation of a high-performance thin-layer chromatography based method for the quantification of trigonelline in Fenugreek (Trigonella foenum-graecum) seeds. JPC J Planar Chromatogr - Mod TLC 32(2):95–102. https://doi.org/10.1556/1006.2019.32.2.3

    Article  CAS  Google Scholar 

  4. Zhang J, Liu D, Meng X, Shi Y, Wang R, Xiao D, He H (2017) Solid phase extraction based on porous magnetic graphene oxide/β-cyclodextrine composite coupled with high performance liquid chromatography for determination of antiepileptic drugs in plasma samples. J Chromatogr A 1524:49–56. https://doi.org/10.1016/j.chroma.2017.09.074

    Article  CAS  PubMed  Google Scholar 

  5. Midttun Ø, Ulvik A, Nygård O, Ueland PM (2018) Performance of plasma trigonelline as a marker of coffee consumption in an epidemiologic setting. Am J Clin Nutr 107(6):941–947. https://doi.org/10.1093/ajcn/nqy059

    Article  PubMed  Google Scholar 

  6. Wen C, Lin C, Cai X, Ma J, Wang X (2014) Determination of sec-O-glucosylhamaudol in rat plasma by gradient elution liquid chromatography–mass spectrometry. J Chromatogr B 944:35–38. https://doi.org/10.1016/j.jchromb.2013.11.001

    Article  CAS  Google Scholar 

  7. Frei RW, Kunz A, Pataki G, Plims T, Zürcher H (1970) The determination of nicotinic acid and nicotinamide by thin-layer chromatography and in situ fluorimetry. Anal Chim Acta 49(3):527–534. https://doi.org/10.1016/S0003-2670(00)86830-0

    Article  CAS  PubMed  Google Scholar 

  8. Shi L-n, Lin Y-M, Zhang X, Chen Z-l (2011) Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution. Chem Eng J 171(2):612–617. https://doi.org/10.1016/j.cej.2011.04.038

    Article  CAS  Google Scholar 

  9. Robles-Molina J, Gilbert-López B, García-Reyes JF, Molina-Díaz A (2013) Comparative evaluation of liquid–liquid extraction, solid-phase extraction and solid-phase microextraction for the gas chromatography–mass spectrometry determination of multiclass priority organic contaminants in wastewater. Talanta 117:382–391

    Article  CAS  Google Scholar 

  10. Mohamadi N, Sharififar F, Ansari M, Pournamdari M, Rezaei M, Hassanabadi N (2021) Pharmacokinetic profile of diosgenin and trigonelline following intravenous and oral administration of fenugreek seed extract and pure compound in rabbit. J Asian Nat Prod Res 23(5):466–477

    Article  CAS  Google Scholar 

  11. Bagheri AR, Ghaedi M (2020) Magnetic metal organic framework for pre-concentration of ampicillin from cow milk samples. J Pharma Anal. https://doi.org/10.1016/j.jpha.2020.02.006

    Article  Google Scholar 

  12. Mohamadi N, Sharififar F, Pournamdari M, Ansari M (2020) Determination of trigonelline in human plasma by magnetic solid-phase extraction: a pharmacokinetic study. J Nanomed 16(4):323–333

    Article  Google Scholar 

  13. Bhati A, Desai RP, Ramchand C (2017) Enhancement in recovery of drugs with high protein binding efficiency from human plasma using magnetic nanoparticles. J Pharma Biomed Anal 143:277–284

    Article  CAS  Google Scholar 

  14. Li Y, Liu J, Zhong Y, Zhang J, Wang Z, Wang L, An Y, Lin M, Gao Z, Zhang D (2011) Biocompatibility of Fe3O4@ Au composite magnetic nanoparticles in vitro and in vivo. J Int J Nanomed 6:2805

    Article  CAS  Google Scholar 

  15. Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Khan MR (2021) Synthesis of Schiff’s base magnetic crosslinked chitosan-glyoxal/ZnO/Fe3O4 nanoparticles for enhanced adsorption of organic dye: modeling and mechanism study. Sustain Chem Pharm 20:100379

    Article  CAS  Google Scholar 

  16. Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Rangabhashiyam S, Khan MR, ALOthman ZA (2021) Magnetic chitosan-glutaraldehyde/zinc oxide/Fe3O4 nanocomposite: optimization and adsorptive mechanism of remazol brilliant blue r dye removal. J Polym Environ. https://doi.org/10.1007/s10924-021-02160-z

    Article  Google Scholar 

  17. Abdulhameed AS, Hum NNMF, Rangabhashiyam S, Jawad AH, Wilson LD, Yaseen ZM, Al-Kahtani AA, ALOthman ZA (2021) Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3 activator. Eng J Environ Chem 9(4):105530

    Article  CAS  Google Scholar 

  18. Jawad AH, Abdulhameed AS, Wilson LD, Hanafiah M, Nawawi W, Alothman ZA, Khan MR (2021) Fabrication of schiff’s base chitosan-glutaraldehyde/activated charcoal composite for cationic dye removal: optimization using response surface methodology. J Poly Environ. https://doi.org/10.1007/s10924-021-02160-z

    Article  Google Scholar 

  19. Asgharinezhad AA, Ebrahimzadeh H, Mirbabaei F, Mollazadeh N, Shekari N (2014) Dispersive micro-solid-phase extraction of benzodiazepines from biological fluids based on polyaniline/magnetic nanoparticles composite. J Analytica Chimica Acta 844:80–89

    Article  CAS  Google Scholar 

  20. Kaya A, Ören AH (2005) Adsorption of zinc from aqueous solutions to bentonite. J Hazard Mater 125(1):183–189. https://doi.org/10.1016/j.jhazmat.2005.05.027

    Article  CAS  PubMed  Google Scholar 

  21. Lee JY, Lee HK (2004) Characterization of organobentonite used for polymer nanocomposites. Mater Chem Phys 85(2):410–415. https://doi.org/10.1016/j.matchemphys.2004.01.032

    Article  CAS  Google Scholar 

  22. Yang M, Wu X, Xi X, Zhang P, Yang X, Lu R, Zhou W, Zhang S, Gao H, Li J (2016) Using β-cyclodextrin/attapulgite-immobilized ionic liquid as sorbent in dispersive solid-phase microextraction to detect the benzoylurea insecticide contents of honey and tea beverages. Food Chem 197:1064–1072. https://doi.org/10.1016/j.foodchem.2015.11.107

    Article  CAS  PubMed  Google Scholar 

  23. Jarrah N, Mu’azu ND, Zubair M, Al-Harthi M (2020) Enhanced adsorptive performance of Cr(VI) onto layered double hydroxide-bentonite composite: Isotherm, kinetic and thermodynamic studies. Sep Sci Technol 55(11):1897–1909. https://doi.org/10.1080/01496395.2019.1614955

    Article  CAS  Google Scholar 

  24. Totea A-M, Sabin J, Dorin I, Hemming K, Laity PR, Conway BR, Waters L, Asare-Addo K (2020) Thermodynamics of clay–drug complex dispersions: Isothermal titration calorimetry and high-performance liquid chromatography. J Pharma Anal 10(1):78–85. https://doi.org/10.1016/j.jpha.2019.12.001

    Article  Google Scholar 

  25. Shahwan T, Üzüm Ç, Eroğlu AE, Lieberwirth I (2010) Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions. Appl Clay Sci 47(3):257–262. https://doi.org/10.1016/j.clay.2009.10.019

    Article  CAS  Google Scholar 

  26. Das D, Gupta U, Das AK (2012) Recent developments in solid phase extraction in elemental speciation of environmental samples with special reference to aqueous solutions. TrAC, Trends Anal Chem 38:163–171. https://doi.org/10.1016/j.trac.2011.01.020

    Article  CAS  Google Scholar 

  27. Duman O, Tunç S (2009) Electrokinetic and rheological properties of Na-bentonite in some electrolyte solutions. Micro Meso Mater 117(1):331–338. https://doi.org/10.1016/j.micromeso.2008.07.007

    Article  CAS  Google Scholar 

  28. He M, Huang L, Zhao B, Chen B, Hu B (2017) Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review. Anal Chim Acta 973:1–24. https://doi.org/10.1016/j.aca.2017.03.047

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Liu D, Shi Y, Sun C, Niu M, Wang R, Hu F, Xiao D, He H (2017) Determination of quinolones in wastewater by porous β-cyclodextrin polymer based solid-phase extraction coupled with HPLC. J Chromatogr B 1068–1069:24–32. https://doi.org/10.1016/j.jchromb.2017.09.046

    Article  CAS  Google Scholar 

  30. Abdelaali M, Fatiha M, Leila N, Nora M, Mouna C, Sakina H, Eddine KD (2017) Computational approach in the study of the inclusion processes of Thymol with β-cyclodextrin. J Mol Liq 242:714–721. https://doi.org/10.1016/j.molliq.2017.07.021

    Article  CAS  Google Scholar 

  31. Monteiro APF, Caminhas LD, Ardisson JD, Paniago R, Cortés ME, Sinisterra RD (2017) Magnetic nanoparticles coated with cyclodextrins and citrate for irinotecan delivery. Carbohyd Polym 163:1–9. https://doi.org/10.1016/j.carbpol.2016.11.091

    Article  CAS  Google Scholar 

  32. Orolínová Z, Mockovčiaková A (2009) Structural study of bentonite/iron oxide composites. Mater Chem Phys 114(2):956–961. https://doi.org/10.1016/j.matchemphys.2008.11.014

    Article  CAS  Google Scholar 

  33. Zhang Y, Zhang R, Yang X, Qi H, Zhang C (2019) Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals. J Pharma Anal 9(1):9–19. https://doi.org/10.1016/j.jpha.2018.11.004

    Article  CAS  Google Scholar 

  34. Das S, Subuddhi U (2019) Controlled delivery of ibuprofen from poly(vinyl alcohol)−poly(ethylene glycol) interpenetrating polymeric network hydrogels. J Pharma Anal 9(2):108–116. https://doi.org/10.1016/j.jpha.2018.11.007

    Article  Google Scholar 

  35. Sun Q, Fang S, Fang Y, Qian Z, Feng H (2017) Fluorometric detection of cholesterol based on β-cyclodextrin functionalized carbon quantum dots via competitive host-guest recognition. Talanta 167:513–519. https://doi.org/10.1016/j.talanta.2017.02.060

    Article  CAS  PubMed  Google Scholar 

  36. Wan D, Wang G, Li W, Wei X (2017) Investigation into the morphology and structure of magnetic bentonite nanocomposites with their catalytic activity. Appl Surf Sci 413:398–407. https://doi.org/10.1016/j.apsusc.2017.03.265

    Article  CAS  Google Scholar 

  37. Lou Z, Zhou Z, Zhang W, Zhang X, Hu X, Liu P, Zhang H (2015) Magnetized bentonite by Fe3O4 nanoparticles treated as adsorbent for methylene blue removal from aqueous solution: synthesis, characterization, mechanism, kinetics and regeneration. J Taiwan Inst Chem Eng 49:199–205. https://doi.org/10.1016/j.jtice.2014.11.007

    Article  CAS  Google Scholar 

  38. Zuzana D, Erika F, Bekényiová A (2017) Bentonite/iron oxide magnetic composites: characterization and application as pb (ii) adsorbents. Arhiv za Tehnicke Nauke/Archives for Technical Sciences 16(1):65–75. https://doi.org/10.7251/afts.2017.0916.065D

    Article  Google Scholar 

  39. Soliemanzadeh A, Fekri M (2017) The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr(VI): effect of relative parameters and soil experiments. Microporous Mesoporous Mater 239:60–69. https://doi.org/10.1016/j.micromeso.2016.09.050

    Article  CAS  Google Scholar 

  40. Pooresmaeil M, Namazi H, Salehi R (2020) Synthesis of photoluminescent glycodendrimer with terminal β-cyclodextrin molecules as a biocompatible pH-sensitive carrier for doxorubicin delivery. Carbohyd Polym 246:116658. https://doi.org/10.1016/j.carbpol.2020.116658

    Article  CAS  Google Scholar 

  41. Abdolmohammad-Zadeh H, Talleb Z (2015) Magnetic solid phase extraction of gemfibrozil from human serum and pharmaceutical wastewater samples utilizing a β-cyclodextrin grafted graphene oxide-magnetite nano-hybrid. Talanta 134:387–393. https://doi.org/10.1016/j.talanta.2014.11.054

    Article  CAS  PubMed  Google Scholar 

  42. Hashemian M, Ghasemi-Kasman M, Ghasemi S, Akbari A, Moalem-Banhangi M, Zare L, Ahmadian SR (2019) Fabrication and evaluation of novel quercetin-conjugated Fe3O4–β-cyclodextrin nanoparticles for potential use in epilepsy disorder. Int J Nanomed 14:6481

    Article  CAS  Google Scholar 

  43. Khoobi M, Khalilvand-Sedagheh M, Ramazani A, Asadgol Z, Forootanfar H, Faramarzi MA (2016) Synthesis of polyethyleneimine (PEI) and β-cyclodextrin grafted PEI nanocomposites with magnetic cores for lipase immobilization and esterification. J Chem Tech Biotech 91(2):375–384

    Article  CAS  Google Scholar 

  44. Mohammed AA, Israa SS (2018) Bentonite coated with magnetite Fe3O4 nanoparticles as a novel adsorbent for copper (II) ions removal from water/wastewater. Environ Tech Innova 10:162–174

    Article  Google Scholar 

  45. Hamadi SA (2012) Effect of trigonelline and ethanol extract of Iraqi Fenugreek seeds on oxidative stress in alloxan diabetic rabbits. J Associa Arab Univers Basic App Sci 12(1):23–26

    CAS  Google Scholar 

  46. Jawad AH, Abdulhameed AS, Mastuli MS (2020) Mesoporous crosslinked chitosan-activated charcoal composite for the removal of thionine cationic dye: comprehensive adsorption and mechanism study. J Poly Environ 28(3):1095–1105

    Article  CAS  Google Scholar 

  47. Abd Malek NN, Jawad AH, Abdulhameed AS, Ismail K, Hameed BH (2020) New magnetic Schiff’s base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: An optimized process. Int J Bio Macromol 146:530–539

    Article  CAS  Google Scholar 

  48. Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O (2017) Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials 7(9):243

    Article  Google Scholar 

  49. Huang X, Yi C, Fan Y, Zhang Y, Zhao L, Liang Z, Pan J (2014) Magnetic Fe3O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy. Mater Sci Eng C 42:325–332

    Article  CAS  Google Scholar 

  50. Pang H-Q, Tang Y-P, Cao Y-J, Tan Y-J, Jin Y, Shi X-Q, Huang S-L, Sun D-Z, Sun J, Tang Z-S (2017) Comparatively evaluating the pharmacokinetic of fifteen constituents in normal and blood deficiency rats after oral administration of Xin-Sheng-Hua Granule by UPLC–MS/MS. J Chromatogr B 1061:372–381

    Article  Google Scholar 

  51. Caporaso N, Whitworth MB, Grebby S, Fisk ID (2018) Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging. Food Res Int 106:193–203

    Article  CAS  Google Scholar 

  52. Cheng Z-X, Jin-Jun W, Zhong-Qiu L, Na L (2013) Development of a hydrophilic interaction chromatography-UPLC assay to determine trigonelline in rat plasma and its application in a pharmacokinetic study. Chin J Nat Med 11(2):164–170

    Article  CAS  Google Scholar 

  53. Lang R, Yagar EF, Eggers R, Hofmann T (2008) Quantitative investigation of trigonelline, nicotinic acid, and nicotinamide in foods, urine, and plasma by means of LC-MS/MS and stable isotope dilution analysis. J Agric Food Chem 56(23):11114–11121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks Miss. Fereshteh Mohammadi at biopharmaceutics laboratory in faculty of pharmacy, Kerman University of Medical Sciences, Kerman, Iran, and Miss Roushan Ahmadi in Kerman Branch, Islamic Azad University, Kerman, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ansari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 386 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meymand, M.A., Kazemipour, M., Shahidi, M. et al. Synthesis of bentonite-β-cyclodextrin-iron nanoparticles composite as a magnetic adsorbent in solid-phase extraction for separation of nicotinic acid N-methylbetaine: an optimized process. Polym. Bull. 79, 9093–9110 (2022). https://doi.org/10.1007/s00289-021-03944-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03944-y

Keywords

Navigation