Skip to main content
Log in

Synthesis and thermoresponsive properties of polymethacrylate molecular brushes with oligo(ethylene glycol)-block-oligo(propylene glycol) side chains

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The synthesis and solution properties of thermoresponsive polymer molecular brushes based on five novel diblock macromonomers (methoxy [oligo(ethylene glycol)e-block-oligo(propylene glycol)p] methacrylates, OEGeOPGpMA, where e = 7.0–10.3 and p = 2.8–10.3) have been studied. The effect of synthesis conditions on the rate of radical solution polymerization in ethyl acetate, maximum conversions of macromonomers, and molecular weight characteristics of polymers has been shown. Homopolymers of OEGeOPGpMA exhibited pronounced surface-active properties. The influence of the length of oligo(propylene glycol) block on the degree of reduction of surface (air–water) and interfacial (hexane-water) tension was shown. The aggregation behavior of polymers was investigated by dynamic light scattering and fluorimetry using pyrene as a fluorescent probe. The dependence of critical micelle concentration on the length of the oligo(propylene glycol) block was shown. The polymers have a critical solution temperature within the range of 34–71 °C depending on the length of oligo(oxyalkylene) blocks and polymer concentration. The relationship between the distribution coefficient of macromonomers in water–oil systems and the LCST of polymers based on them has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsou YH, Zhang XQ, Zhu H, Syed S, Xu XY (2017) Drug delivery to the brain across the blood-brain barrier using nanomaterials. Small 13(43):1701921. https://doi.org/10.1002/smll.201701921

    Article  CAS  Google Scholar 

  2. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomed 10:975–999. https://doi.org/10.2147/IJN.S68861

    Article  CAS  Google Scholar 

  3. El-Say KM, El-Sawy HS (2017) Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm 528(1–2):675–691. https://doi.org/10.1016/j.ijpharm.2017.06.052

    Article  CAS  PubMed  Google Scholar 

  4. Zhang YF, Huang YX, Li S (2014) Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 15(4):862–871. https://doi.org/10.1208/s12249-014-0113-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Riabtseva A, Mitina N, Grytsyna I, Boiko N, Garamus VM, Stryhanyuk H, Stoika R, Zaichenko A (2016) Functional micelles formed by branched polymeric surfactants: synthesis, characteristics, and application as nanoreactors and carriers. Eur Polymer J 75:406–422. https://doi.org/10.1016/j.eurpolymj.2016.01.006

    Article  CAS  Google Scholar 

  6. Logie J, Owen SC, McLaughlin CK, Shoichet MS (2014) PEG-graft density controls polymeric nanoparticle micelle stability. Chem Mater 26:2847–2855. https://doi.org/10.1021/cm500448x

    Article  CAS  Google Scholar 

  7. Lee HI, Pietrasik J, Sheiko SS, Matyjaszewski K (2010) Stimuli-responsive molecular brushes. Prog Polym Sci 35(1–2):24–44. https://doi.org/10.1016/j.progpolymsci.2009.11.002

    Article  CAS  Google Scholar 

  8. Foster JC, Varlas S, Couturaud B, Coe Z, O’Rei’lly RK (2019) Getting into shape: reflections on a new generation of cylindrical nanostructures’ self-assembly using polymer building blocks. J Am Chem Soc 141(7):2742–2753. https://doi.org/10.1021/jacs.8b08648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chawathe M, Patel A, Jonnalagadda S, Sidorenko A (2018) Design of hybrid molecular brushes with reversible surface adaptability on exposure to specific solvents. Biointerphases 13:041006. https://doi.org/10.1116/1.5029479

    Article  CAS  PubMed  Google Scholar 

  10. Simonova M, Ivanov I, Meleshko T, Kopyshev A, Santer S, Yakimansky A, Filippov A (2020) Self-assembly of molecular brushes with polyimide backbone and amphiphilic block copolymer side chains in selective solvents. Polymers 12(12):2922. https://doi.org/10.3390/polym12122922

    Article  CAS  PubMed Central  Google Scholar 

  11. Pelras T, Mahon CS, Mullner M (2018) Synthesis and applications of compartmentalised molecular polymer brushes. Angew Chem Int Ed Engl 57(24):6982–6994. https://doi.org/10.1002/anie.201711878

    Article  CAS  PubMed  Google Scholar 

  12. Choinopoulos I (2019) Grubbs’ and schrock’s catalysts, ring opening metathesis polymerization and molecular brushes-synthesis, characterization properties and applications. Polymers 11(2):298. https://doi.org/10.3390/polym11020298

    Article  CAS  PubMed Central  Google Scholar 

  13. Sun L, Wei H, Zhang XS, Meng C, Kang GY, Ma W, Ma LW, Wang BY, Yu CY (2020) Synthesis of polymeric micelles with dual-functional sheddable PEG stealth for enhanced tumor-targeted drug delivery. Polym Chem 11:4469–4476. https://doi.org/10.1039/D0PY00653J

    Article  CAS  Google Scholar 

  14. Badi N (2017) Non-linear PEG-based thermoresponsive polymer systems. Prog Polym Sci 66:54–79. https://doi.org/10.1016/j.progpolymsci.2016.12.006

    Article  CAS  Google Scholar 

  15. Liu M, Leroux JC, Gauthier MA (2015) Conformation-function relationships for the comb-shaped polymer pOEGMA. Prog Polym Sci 48:111–121. https://doi.org/10.1016/j.progpolymsci.2015.03.001

    Article  CAS  Google Scholar 

  16. Lipowska-Kur D, Szweda R, Trzebicka B, Dworak A (2018) Preparation and characterization of doxorubicin nanocarriers based on thermoresponsive oligo(ethylene glycol) methyl ether methacrylate polymer-drug conjugates. Eur Polym J 109:391–401. https://doi.org/10.1016/j.eurpolymj.2018.10.008

    Article  CAS  Google Scholar 

  17. Kafetzi M, Pispas S, Bao XY, Yao P (2020) Amphiphilic QP(DMAEMA-co-LMA)-b-POEGMA random-block terpolymers as nanocarriers for insulin. Biomedicines 8(10):392. https://doi.org/10.3390/biomedicines8100392

    Article  CAS  PubMed Central  Google Scholar 

  18. Skandalis A, Sergides A, Bakandritsos A, Pispas S (2018) PLMA-b-POEGMA amphiphilic block copolymers as nanocarriers for the encapsulation of magnetic nanoparticles and indomethacin. Polymers 10(1):14

    Article  Google Scholar 

  19. Zhou T, Wu W, Zhou S (2010) Engineering oligo(ethylene glycol)-based thermosensitive microgels for drug delivery applications. Polymer 51(17):3926–3933. https://doi.org/10.1016/j.polymer.2010.06.030

    Article  CAS  Google Scholar 

  20. Wang Y, Yuan ZC, Chen DJ (2012) Thermo- and pH-sensitive behavior of hydrogels based on oligo (ethylene glycol) methacrylates and acrylic acid. J Mater Sci 47(3):1280–1288. https://doi.org/10.1007/s10853-011-5901-1

    Article  CAS  Google Scholar 

  21. Bodratti AM, Alexandridis P (2018) Formulation of poloxamers for drug delivery. J Funct Biomater 9(1):11. https://doi.org/10.3390/jfb9010011

    Article  CAS  PubMed Central  Google Scholar 

  22. Zhao XZ, Deng KC, Liu FJ, Zhang XL, Yang HR, Peng JL, Liu ZK, Ma LW, Wang BY, Wei H (2018) Fabrication of conjugated amphiphilic triblock copolymer for drug delivery and fluorescence cell imaging. ACS Biomater Sci Eng 4(2):566–575. https://doi.org/10.1021/acsbiomaterials.7b00991

    Article  CAS  PubMed  Google Scholar 

  23. Zhang XJ, Dai Y (2019) Recent development of brush polymers via polymerization of poly(ethylene glycol)-based macromonomers. Polym Chem 10:2212–2222. https://doi.org/10.1039/C9PY00104B

    Article  CAS  Google Scholar 

  24. Vancoillie G, Frank D, Hoogenboom R (2014) Thermoresponsive poly(oligo ethylene glycol acrylates). Prog Polym Sci 39(6):1074–1095. https://doi.org/10.1016/j.progpolymsci.2014.02.005

    Article  CAS  Google Scholar 

  25. Lutz JF, Hoth A, Schade K (2009) Design of oligo(ethylene glycol)-based thermoresponsive polymers: an optimization study. Des Monomers Polym 12(4):343–353. https://doi.org/10.1163/156855509X448316

    Article  CAS  Google Scholar 

  26. Lutz JF (2008) Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J Polym Sci Part A: Polym Chem 46(11):3459–3470. https://doi.org/10.1002/pola.22706

    Article  CAS  Google Scholar 

  27. Neugebauer D (2007) Graft copolymers with poly(ethylene oxide) segments. Polym Int 56(12):1469–1498

    Article  CAS  Google Scholar 

  28. Kazantsev OA, Kamorin DM, Orekhov DV, Sivokhin AP (2015) Study of amphiphilic properties of amine- and oligo(ethylene glycol)-containing (meth)acrylic monomers. Des Monomers Polym 18(4):378–384. https://doi.org/10.1080/15685551.2015.1012627

    Article  CAS  Google Scholar 

  29. Orekhov DV, Kamorin DM, Rumyantsev M, Kazantsev OA, Sivokhin AP, Gushchin AV, Savinova MV (2015) Assembly of oligo(ethylene glycol)- and amine-containing methacrylic esters in water and water-hexane mixtures. Colloid Surface A 481:20–30. https://doi.org/10.1016/j.colsurfa.2015.04.018

    Article  CAS  Google Scholar 

  30. Orekhov DV, Kazantsev OA, Sivokhin AP, Savinova MV (2018) Features of the acid-catalyzed hydrolysis of mono- and poly(ethylene glycol) methacrylates. Eur Polymer J 100:18–24. https://doi.org/10.1016/j.eurpolymj.2018.01.010

    Article  CAS  Google Scholar 

  31. Kazantsev OA, Orekhov DV, Sivokhin AP, Kamorin DM, Savinova MV (2016) Concentration effects in the base-catalyzed hydrolysis of oligo(ethylene glycol)- and amine-containing methacrylic monomers. Des Monomers Polym 20:136–143. https://doi.org/10.1080/15685551.2016.1231034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuznetsova NA, Kazantsev OA, Shirshin KV, Khokhlova TA, Malyshev AP (2003) Hydrolysis of N, N-dimethylaminoethyl methacrylate and its salts in concentrated aqueous solutions. Russ J Appl Chem 76(7):1117–1120. https://doi.org/10.1023/A:1026318630534

    Article  CAS  Google Scholar 

  33. Abdollahi H, Najafi V, Ziaee F, Kabiri K, Narimani F (2014) Radical copolymerization of acrylic acid and OEGMA475: monomer reactivity ratios and structural parameters of the copolymer. Macromol Res 22(12):1330–1336

    Article  CAS  Google Scholar 

  34. Orekhov DV, Kamorin DM, Simagin AS, Arifullin IR, Kazantsev OA, Sivokhin AP, Savinova MV (2020) Molecular brushes based on copolymers of alkoxy oligo(ethylene glycol) methacrylates and dodecyl(meth)acrylate: features of synthesis by conventional free radical polymerization. Polym Bull. https://doi.org/10.1007/s00289-020-03390-2

    Article  Google Scholar 

  35. Maiti S, Chatterji PR (2000) Aggregation and polymerization of amphiphilic macromonomers with a double bond at the hydrophilic terminal. J Colloid Interface Sci 232(2):273–281. https://doi.org/10.1006/jcis.2000.7209

    Article  CAS  PubMed  Google Scholar 

  36. Zhang YM, Wang ZY, Matyjaszewski K, Pietrasik J (2019) Evolution of morphology of POEGMA-b-PBzMA nano-objects formed by PISA. Macromol Rapid Commun 40(2):1800331. https://doi.org/10.1002/marc.201800331

    Article  CAS  Google Scholar 

  37. Karatza A, Pispas S (2018) Poly(hydroxyl propyl methacrylate)-b-poly(oligo ethylene glycol methacrylate) thermoresponsive block copolymers by RAFT polymerization. Macromol Chem Phys 219(12):1800060. https://doi.org/10.1002/macp.201800060

    Article  CAS  Google Scholar 

  38. Mendrek B, Fus A, Klarzynska K, Sieron AL, Smet M, Kowalczuk A, Dworak A (2018) Synthesis, characterization and cytotoxicity of novel thermoresponsive star copolymers of N, N′-dimethylaminoethyl methacrylate and hydroxyl-bearing oligo(ethylene glycol) methacrylate. Polymers 10(11):1255

    Article  Google Scholar 

  39. Szweda D, Szweda R, Dworak A, Trzebicka B (2017) Thermoresponsive poly oligo(ethylene glycol) methacrylatels and their bioconjugates—synthesis and solution behavior. Polimery 62(4):298–310

    Article  CAS  Google Scholar 

  40. Zhang M, Liu Y, Peng JL, Liu YP, Liu FJ, Ma W, Ma LW, Yu CY, Wei H (2020) Facile construction of stabilized, pH-sensitive micelles based on cyclic statistical copolymers of poly(oligo(ethylene glycol)methyl ether methacrylate-st-N, N-dimethylaminoethyl methacrylate) for in vitro anticancer drug delivery. Polym Chem 11:6139–6148. https://doi.org/10.1039/D0PY01076F

    Article  CAS  Google Scholar 

  41. Kafetzi M, Pispas S (2021) Multifaceted pH and temperature induced self-assembly of P(DMAEMA-co-LMA)-b-POEGMA terpolymers and their cationic analogues in aqueous media. Macromol Chem Phys 222(5):2000358. https://doi.org/10.1002/macp.202000358

    Article  CAS  Google Scholar 

  42. Otulakowski Ł, Kasprów M, Strzelecka A, Dworak A, Trzebicka B (2021) Thermal behaviour of common thermoresponsive polymers in phosphate buffer and in its salt solutions. Polymers 13(1):90. https://doi.org/10.3390/polym13010090

    Article  CAS  Google Scholar 

  43. Kasprow M, Machnik J, Otulakowski L, Dworak A, Trzebicka B (2019) Thermoresponsive P(HEMA-co-OEGMA) copolymers: synthesis, characteristics and solution behavior. RSC Adv 9(70):40966–40974. https://doi.org/10.1039/C9RA09668J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsumoto M, Takenaka M, Sawamoto M, Terashima T (2019) Self-assembly of amphiphilic block pendant polymers as microphase separation materials and folded flower micelles. Polym Chem 10(36):4954–4961. https://doi.org/10.1039/C9PY01078E

    Article  CAS  Google Scholar 

  45. Sivokhin AP, Orekhov DV, Kazantsev OA, Gubanova OV, Kamorin DM, Zarubina IS, Bolshakova EA, Zaitsev SD (2021) Amphiphilic thermoresponsive copolymer bottlebrushes: synthesis, characterization and study of their self-assembly into flower-like micelles. Polym J 53:655–665. https://doi.org/10.1038/s41428-020-00456-w

    Article  CAS  Google Scholar 

  46. Shibata M, Matsumoto M, Hirai Y, Takenaka M, Sawamoto M, Terashima T (2018) Intramolecular folding or intermolecular self-assembly of amphiphilic random copolymers: on-demand control by pendant design. Macromolecules 51(10):3738–3745. https://doi.org/10.1021/acs.macromol.8b00570

    Article  CAS  Google Scholar 

  47. Terashima T, Sugita T, Fukae K, Sawamoto M (2014) Synthesis and single-chain folding of amphiphilic random copolymers in water. Macromolecules 47(2):589–600. https://doi.org/10.1021/ma402355v

    Article  CAS  Google Scholar 

  48. Ommura Y, Imai S, Takenaka M, Ouchi M, Terashima T (2020) Selective coupling and polymerization of folded polymer micelles to nanodomain self-assemblies. ACS Macro Lett 9(3):426–430. https://doi.org/10.1021/acsmacrolett.0c00013

    Article  CAS  PubMed  Google Scholar 

  49. Pomposo JA (ed) (2017) Single-chain polymer nanoparticles: synthesis characterization simulations and applications. Wiley-VCH Verlag GmbH & Co., Weinheim

    Google Scholar 

  50. Gonzalez-Burgos M, Latorre-Sanchez A, Pomposo JA (2015) Advances in single chain technology. Chem Soc Rev 44(17):6122–6142. https://doi.org/10.1039/C5CS00209E

    Article  CAS  PubMed  Google Scholar 

  51. Ordanini S, Cellesi F (2018) Complex polymeric architectures self-assembling in unimolecular micelles: preparation characterization and drug nanoencapsulation. Pharmaceutics 10(4):209. https://doi.org/10.3390/pharmaceutics10040209

    Article  CAS  PubMed Central  Google Scholar 

  52. Park CH, Lee JH, Jung JP, Jung B, Kim JH (2015) A highly selective PEGBEM-g-POEM comb copolymer membrane for CO2/N2 separation. J Membr Sci 492(4):452–460. https://doi.org/10.1016/J.MEMSCI.2015.06.023

    Article  CAS  Google Scholar 

  53. Park CH, Lee JH, Jung JP, Lee W, Ryu DY, Kim JH (2019) Orientation of an amphiphilic copolymer to a lamellar structure on a hydrophobic surface and implications for CO2 capture membranes. Angew Chem Int Ed 58(4):1143–1147

    Article  CAS  Google Scholar 

  54. Park CH, Lim JY, Lee JH, Lee JM, Park JT, Kim JH (2016) Synthesis and application of PEGBEM-g-POEM graft copolymer electrolytes for dye-sensitized solar cells. Solid State Ion 290:24–30. https://doi.org/10.1016/j.ssi.2016.03.021

    Article  CAS  Google Scholar 

  55. Miladinovic ZR, Micic M, Suljovrujic E (2016) Temperature/pH dual responsive OPGMA based copolymeric hydrogels prepared by gamma radiation: an optimisation study. J Polym Res 23(4):1–12. https://doi.org/10.1007/s10965-016-0975-8

    Article  CAS  Google Scholar 

  56. Micic M, Miladinovic ZR, Suljovrujic E (2016) Tuning the thermoresponsive properties of poly(oligo(propylene glycol) methacrylate) hydrogels via gradient copolymerization with 2-hydroxyethyl methacrylate. Int J Polym Mater Polym Biomater 65(1):18–27. https://doi.org/10.1080/00914037.2015.1055627

    Article  CAS  Google Scholar 

  57. Paris R, Quijada-Garrido I (2011) Synthesis and aggregation properties in water solution of comblike methacrylic polymers with oligo(propylene glycol)-block-oligo(ethylene glycol) as side chains. J Polym Sci Part A: Polym Chem 49:1928–1932. https://doi.org/10.1002/pola.24616

    Article  CAS  Google Scholar 

  58. Miladinovic ZR, Micic M, Mrakovic A, Suljovrujic E (2018) Smart hydrogels with ethylene glycol propylene glycol pendant chains. J Polym Res. https://doi.org/10.1007/s10965-017-1408-z

    Article  Google Scholar 

  59. Suljovrujic E, Miladinovic ZR, Krstic M (2020) Swelling properties and drug release of new biocompatible POEGOPGMA hydrogels with VPTT near to the human body temperature. Polym Bull 78:2405–2425. https://doi.org/10.1007/s00289-020-03217-0

    Article  CAS  Google Scholar 

  60. Kang J-J, Jung FA, Ko C-H, Shehu K, Barnsley LC, Kohler F, Dietz H, Zhao J, Pispas S, Papadakis CM (2020) Thermoresponsive molecular brushes with propylene oxide/ethylene oxide copolymer side chains in aqueous solution. Macromolecules 53(10):4068–4081. https://doi.org/10.1021/acs.macromol.0c00263

    Article  CAS  Google Scholar 

  61. Tanaka M, Mochizuki A (2004) Effect of water structure on blood compatibility-thermal analysis of water in poly(meth)acrylate. J Biomed Mater Res A 68(4):684–695. https://doi.org/10.1002/jbm.a.20088

    Article  CAS  PubMed  Google Scholar 

  62. Han S, Hagiwara M, Ishizone T (2003) Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerizations of oligo(ethylene glycol) methyl ether methacrylates. Macromolecules 36(22):8312–8319. https://doi.org/10.1021/ma0347971

    Article  CAS  Google Scholar 

  63. Mertoglu M, Garnier S, Laschewsky A, Skrabania K, Storsberg J (2005) Stimuli responsive amphiphilic block copolymers for aqueous media synthesised via reversible addition fragmentation chain transfer polymerisation (RAFT). Polymer 46(18):7726–7740. https://doi.org/10.1016/j.polymer.2005.03.101

    Article  CAS  Google Scholar 

  64. Zhao CL, Winnik MA, Riess G, Croucher MD (1990) Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers. Langmuir 6(2):514–516. https://doi.org/10.1021/la00092a038

    Article  CAS  Google Scholar 

  65. Naksuriya O, Shi Y, van Nostrum CF, Anuchapreeda S, Hennink WE, Okonogi S (2015) HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth. Eur J Pharm Biopharm 94:501–512. https://doi.org/10.1016/j.ejpb.2015.06.010

    Article  CAS  PubMed  Google Scholar 

  66. Krivorotova T, Vareikis A, Gromadzki D, Netopilík M, Makuška R (2010) Conventional free-radical and RAFT copolymerization of poly(ethylene oxide) containing macromonomers. Eur Polymer J 46:546–556. https://doi.org/10.1016/j.eurpolymj.2009.12.001

    Article  CAS  Google Scholar 

  67. Nardi M, D’Acunzo F, Clemente M, Proiettia G, Gentili P (2017) A first study on copolymers of a methacrylate containing the 2-(hydroxyimino)aldehyde group and OEGMA. RAFT polymerization and assessment of thermal and photoresponsive polymer behavior. Polym Chem 8:4233–4245. https://doi.org/10.1039/C7PY00975E

    Article  CAS  Google Scholar 

  68. Brandrup J, Immergut EH, Grulke EA (eds) (1999) Polymer handbook, 4th edn. Wiley, New York

    Google Scholar 

  69. Yamada B, Kamei H, Otsu T (1980) Effect of tin tetrachloride on thermal decompositions of α, α′-azobisisobutyronitrile and dimethyl α, α′-azobisisobutyrate. J Polym Sci Polym Chem Ed 18(6):1917–1922. https://doi.org/10.1002/pol.1980.170180627

    Article  CAS  Google Scholar 

  70. Bawn CEH, Mellish SF (1951) A method of determination of the rate of molecular dissociation in solution. Parts I and II. – The rate of dissociation of benzoyl peroxide and 2:2′-azo-bis(isobutyronitrile) in various solvents. Trans Faraday Soc 47:1216–1227. https://doi.org/10.1039/TF9514701216

    Article  CAS  Google Scholar 

  71. Odian G (2004) Principles of polymerization, 4th edn. Wiley, New York

    Book  Google Scholar 

  72. Bo G, Wesslén B, Wesslén KB (1992) Amphiphilic comb-shaped polymers from poly(ethylene glycol) macromonomers. J Polym Sci Part A: Polym Chem 30(9):1799–1808. https://doi.org/10.1002/pola.1992.080300903

    Article  CAS  Google Scholar 

  73. Geetha B, Mandal AB, Ramasami T (1993) Synthesis, characterization, and micelle formation in an aqueous solution of methoxypolyethylene glycol macromonomer, homopolymer, and graft copolymer. Macromolecules 26:4083–4088. https://doi.org/10.1021/ma00068a002

    Article  CAS  Google Scholar 

  74. Rudin A, Choi P (eds) (2013) The elements of polymer science & engineering, 3rd edn. Academic Press, Waltham

    Google Scholar 

  75. Robinson KL, de Paz-Báñez MV, Wang XS, Armes SP (2001) Synthesis of well-defined, semibranched, hydrophilic−hydrophobic block copolymers using atom transfer radical polymerization. Macromolecules 34(17):5799–5805. https://doi.org/10.1021/ma010562i

    Article  CAS  Google Scholar 

  76. Wanka G, Hoffmann H, Ulbricht W (1994) Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27(15):4145–4159. https://doi.org/10.1021/ma00093a016

    Article  CAS  Google Scholar 

  77. Zhao J, Zhang G, Pispas S (2010) Thermoresponsive brush copolymers with poly(propylene oxide-ran-ethylene oxide) side chains via metal-free anionic polymerization “grafting from” technique. J Polym Sci Part A: Polym Chem 48(11):2320–2328

    Article  CAS  Google Scholar 

  78. Osváth Z, Iván B (2016) The Dependence of the cloud point, clearing point, and hysteresis of poly(N-isopropylacrylamide) on experimental conditions: the need for standardization of thermoresponsive transition determinations. Macromol Chem Phys 218(4):1600470. https://doi.org/10.1002/macp.201600470

    Article  CAS  Google Scholar 

  79. Wang K, Liu Q, Liu G, Zeng Y (2020) Novel thermoresponsive homopolymers of poly[oligo(ethylene glycol) (acyloxy) methacrylate]s: LCST-type transition in water and UCST-type transition in alcohols. Polymer 203:122746. https://doi.org/10.1016/j.polymer.2020.122746

    Article  CAS  Google Scholar 

  80. Li S, Liu Y, Ji S, Zhou Z, Li Q (2014) Synthesis and self-assembly behavior of thermoresponsive poly(oligo(ethylene glycol) methyl ether methacrylate)-POSS with tunable lower critical solution temperature. Colloid Polym Sci 292(11):2993–3001. https://doi.org/10.1007/s00396-014-3262-4

    Article  CAS  Google Scholar 

  81. Soeriyadi AH, Li G-Z, Slavin S, Jones MW, Amos CM, Becer CR, Whittaker MR, Haddleton DM, Boyera C, Davis TP (2011) Synthesis and modification of thermoresponsive poly(oligo(ethylene glycol)methacrylate) via catalytic chain transfer polymerization and thiol-ene Michael addition. Polym Chem 2:815–822. https://doi.org/10.1039/C0PY00372G

    Article  CAS  Google Scholar 

  82. Ramírez-Jiménez A, Montoya-Villegas KA, Licea-Claverie A, Gónzalez-Ayón MA (2019) Tunable thermo-responsive copolymers from DEGMA and OEGMA synthesized by RAFT polymerization and the effect of the concentration and saline phosphate buffer on its phase transition. Polymers 11(10):1657. https://doi.org/10.3390/polym11101657

    Article  CAS  PubMed Central  Google Scholar 

  83. Pelosi C, Guazzelli E, Calosi M, Bernazzani L, Tiné MR, Duce C, Martinelli E (2021) Investigation of the LCST-thermoresponsive behavior of novel oligo(ethylene glycol)-modified pentafluorostyrene homopolymers. Appl Sci 11(6):2711. https://doi.org/10.3390/app11062711

    Article  CAS  Google Scholar 

  84. Roth PJ, Collin M, Boyer C (2013) Advancing the boundary of insolubility of non-linear PEG-analogues in alcohols: UCST transitions in ethanol–water mixtures. Soft Matter 9(6):1825–1834. https://doi.org/10.1039/C2SM27427B

    Article  CAS  Google Scholar 

  85. He X, Zhou R, Ge C, Ling Y, Luan S, Tang H (2019) OEGylated polypeptide bearing Y-shaped pendants with a LCST close to body temperature: synthesis and thermoresponsive properties. Eur Polymer J 112:547–554. https://doi.org/10.1016/j.eurpolymj.2018.10.011

    Article  CAS  Google Scholar 

  86. Eggenhuisen TM, Becer CR, Fijten MWM, Eckardt R, Hoogenboom R, Schubert US (2008) Libraries of statistical hydroxypropyl acrylate containing copolymers with LCST properties prepared by NMP. Macromolecules 41(14):5132–5140. https://doi.org/10.1021/ma800469p

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Study was financially supported by the Russian Science Foundation (Project No. 20-13-00161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Orekhov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 311 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamorin, D.M., Simagin, A.S., Orekhov, D.V. et al. Synthesis and thermoresponsive properties of polymethacrylate molecular brushes with oligo(ethylene glycol)-block-oligo(propylene glycol) side chains. Polym. Bull. 79, 8599–8616 (2022). https://doi.org/10.1007/s00289-021-03929-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03929-x

Keywords

Navigation