Skip to main content
Log in

Optimization study on properties of poly (lactic acid) (PLA) composites filled with Scomberomorus guttatus-derived hydroxyapatite and montmorillonite (MMT) under electron beam irradiation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This research was carried out to investigate the interactive effects of MMT loading level and electron beam irradiation on the properties of PLA composites added with Mackerel-derived hydroxyapatite (MHAp). The introduction of MMT particles has increased the mechanical strength of PLA/MHAp composite due to effective intercalation of PLA matrix into MMT interlayer space as evident in increment of d-spacing. However, the mechanical properties of PLA composite were deteriorated when MMT amount increased up to 4 phr. Besides, the application of irradiation dosage up to 20 kGy has enhanced the mechanical properties and gel content of all PLA composites due to the occurrence of cross-linking networks induced by irradiation. The increase in MMT amounts has restricted the formation of cross-linking as evident in XRD analysis. For non-MMT added samples, further increasing irradiation dose up to 30 kGy had decreased the gel content by inducing predominant chains scissioning reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PLA:

Poly (lactic acid)

LDPE:

Low density polyethylene

HAp:

Hydroxyapatite

MHAp:

Mackerel-derived hydroxyapatite

MMT:

Montmorillonite

TMPTMA:

Trimethylolpropane trimethacrylate

EB:

Electron beam

SEM:

Scanning electron microscopy

FTIR:

Fourier transform infrared

XRD:

X-ray diffraction

TGA:

Thermogravimetric analysis

EDX:

Energy dispersive X-ray

%Xc:

Degree of crystallinity

L :

Crystallite size/grain size

Ǻ:

Angstrom

kGy:

Kilogray

phr:

Parts per hundred PLA resin

Na+ :

Sodium cation

PO4 3 :

Phosphate group

References

  1. Wan YZ, Wu CQ, Xiong GY, Zuo GF, Jin J, Ren KJ, Zhu Y, Wang ZR, Luo HL (2015) Mechanical properties and cytotoxicity of nanoplate-like hydroxyapatite/polylactide nanocomposites prepared by intercalation technique. J Mech Behav Biomed Mater 47:29–37. https://doi.org/10.1016/j.jmbbm.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  2. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Poly(lactic acid): mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366. https://doi.org/10.1016/j.addr.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  3. Piergiorgio G, Valeria C, Irene C, Paul VH (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659. https://doi.org/10.3390/ijms15033640

    Article  CAS  Google Scholar 

  4. Nieddu E, Mazzucco L, Gentile P, Benko T, Balbo V, Mandrile R, Ciardelli G (2009) Preparation and biodegradation of clay composites of PLA. React Funct Polym 69:371–379. https://doi.org/10.1016/j.reactfunctpolym.2009.03.002

    Article  CAS  Google Scholar 

  5. Dadbin S, Kheirkhah Y (2014) Gamma irradiation of melt processed biomedical PDLLA/HAP nanocomposites. Radiat Phys Chem 97:270–274. https://doi.org/10.1016/j.radphyschem.2013.12.001

    Article  CAS  Google Scholar 

  6. Deplaine H, Gómez Ribelle JL, Gallego Ferrer G (2010) Effect of the content of hydroxyapatite nanoparticles on the properties and bioactivity of poly(L-lactide): hybrid membranes. Compos Sci Technol 70:1805–1812. https://doi.org/10.1016/j.compscitech.2010.06.009

    Article  CAS  Google Scholar 

  7. Lijuan X, Liuyun J, Chengdong X, Lixin J, Ye L (2014) Study on a novel double-layered composite membrane of Mg-substituted nano-hydroxyapatite/poly(L-lactide-co-ε-caprolactone): effect of different L-lactide/ε-caprolactone ratios. Mater Sci Eng A 615:361–366. https://doi.org/10.1016/j.msea.2014.07.044

    Article  CAS  Google Scholar 

  8. Hong Z, Zhang PB, He CL, Qiu XY, Liu AX, Chen L, Chen XS, Jing XB (2015) Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials 26:6296–6304. https://doi.org/10.1016/j.biomaterials.2005.04.018

    Article  CAS  Google Scholar 

  9. Zhao W, Li JJ, Jin KX, Liu WL, Qiu XF, Li CR (2016) Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mater Sci Eng C 59:1181–1194. https://doi.org/10.1016/j.msec.2015.11.026

    Article  CAS  Google Scholar 

  10. Foggia MD, Corda U, Plescia E, Taddei P, Torreggiani A (2010) Effects of sterilisation by high-energy radiation on biomedical poly-(ε-caprolactone)/hydroxyapatite composites. J Mater Sci: Mater Med 21:1789–1797. https://doi.org/10.1007/s10856-010-4046-0

    Article  CAS  Google Scholar 

  11. Liuyun J, Chengdong X, Lixin J, Lijuan X (2014) Effect of hydroxyapatite with different morphology on the crystallization behavior, mechanical property and in vitro degradation of hydroxyapatite/poly(lactic-co-glycolic) composite. Compos Sci Technol 93:61–67. https://doi.org/10.1016/j.compscitech.2013.12.026

    Article  CAS  Google Scholar 

  12. Bouakaz BS, Pillin I, Habi A, Grohens Y (2015) Synergy between fillers in organomontmorillonite/grapheme-PLA nanocomposites. Appl Clay Sci 116–117:69–77. https://doi.org/10.1016/j.clay.2015.08.017

    Article  CAS  Google Scholar 

  13. Arjmandi R, Hassan A, Mohamad-Haafiz MK, Zakaria Z, Inuwa IM (2014) Characterization of polylactic acid/microcrystalline cellulose/montromorillonite hybrid composites. Malaysian J Anal Sci 18(3):642–650

    Google Scholar 

  14. Shayan M, Azizi H, Ghasemi I, Karrabi M (2015) Effect of modified starch and nanoclay particles on biodegradability and mechanical properties of cross-linked poly lactic acid. Carbohydr Polym 124:237–244. https://doi.org/10.1016/j.carbpol.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  15. Jain S, Datta M (2015) Oral extended release of dexamethasone: montmorillonite-PLGA nanocomposites as a delivery vehicle. Appl Clay Sci 104:182–188. https://doi.org/10.1016/j.clay.2014.11.028

    Article  CAS  Google Scholar 

  16. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  17. Hassan MM (2015) Synergistic effect of montmorillonite–clay and gamma irradiation on the characterizations of waste polyamide copolymer and reclaimed rubber powder nanocomposites. Compos Part B Eng 79:28–34. https://doi.org/10.1016/j.compositesb.2015.01.046

    Article  CAS  Google Scholar 

  18. Peponi L, Puglia D, Torre L, Valentini L, Kenny JM (2014) Processing of nanostructured polymers and advanced polymeric based nanocomposites. Mater Sci Eng R 85:1–46. https://doi.org/10.1016/j.mser.2014.08.002

    Article  Google Scholar 

  19. Fernández MJ, Fernández MD, Aranburu I (2013) Poly(l-lactic acid)/organically modified vermiculite nanocomposites prepared by melt compounding: effect of clay modification on microstructure and thermal properties. Eur Polym J 49:1257–1267. https://doi.org/10.1016/j.eurpolymj.2013.02.031

    Article  CAS  Google Scholar 

  20. Fernández MJ, Fernández MD, Aranburu I (2013) Effect of clay surface modification and organoclay purity on microstructure and thermal properties of poly(l-lactic acid)/vermiculite nanocomposites. Appl Clay Sci 80–81:372–381. https://doi.org/10.1016/j.clay.2013.06.034

    Article  CAS  Google Scholar 

  21. Morgan AB, Gilman JW (2002) Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J Appl Polym Sci 87(8):1329–1338. https://doi.org/10.1002/app.11884

    Article  CAS  Google Scholar 

  22. Milicevic D, Trifunovic S, Dojcilovic J, Ignjatovic N, Suljovrujic E (2010) The influence of gamma radiation on the molecular weight and glass transition of PLLA and HAp/PLLA nanocomposite. Nucl Inst Meth Phys Res B 268:2744–2749. https://doi.org/10.1016/j.nimb.2010.06.036

    Article  CAS  Google Scholar 

  23. Yıldırıma Y, Oral A (2014) The influence of γ-ray irradiation on the thermal stability and molecular weight of Poly (l-Lactic acid) and its nanocomposites. Radiat Phys Chem 96:69–74. https://doi.org/10.1016/j.radphyschem.2013.08.016

    Article  CAS  Google Scholar 

  24. Shanthini GM, Martin CA, Sakthivel N, Veerla SC, Elayaraja K, Lakshmi BS, Asokan K, Kanjilal D, Kalkura SN (2014) Physical and biological properties of the ion beam irradiated PMMA-based composite films. Appl Surf Sci 329:116–126. https://doi.org/10.1016/j.apsusc.2014.12.129

    Article  CAS  Google Scholar 

  25. Bee ST, Lee TS, Ratnam CT, Kavee-Raaz RRD, Tee TT, Hui D, Rahmat AR (2015) Electron beam irradiation enhanced of Hibiscus cannabinus fiber strengthen polylactic acid composites. Compos Part B Eng 79:35–46. https://doi.org/10.1016/j.compositesb.2015.04.019

    Article  CAS  Google Scholar 

  26. Ng HM, Bee ST, Ratnam CT, Sin LT, Phang YY, Tee TT, Rahmat AR (2014) Effectiveness of trimethylopropane trimethacrylate for the electron-beam-irradiation-induced cross-linking of polylactic acid. Nucl Inst Meth Phys Res B 319:62–70. https://doi.org/10.1016/j.nimb.2013.10.027

    Article  CAS  Google Scholar 

  27. Venkatesan J, Lowe B, Manivasagan P, Kang KH, Chalisserry EP, Anil S, Kim DG, Kim SK (2015) Isolation and characterization of nano-hydroxyapatite from salmon fish bone. Materials 8:5426–5439. https://doi.org/10.3390/ma8085253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Akram M, Ahmed R, Shakir I, Ibrahim WAW, Hussain R (2013) Extracting hydroxyapatite and its precursors from natural resources. J Mater Sci 49(4):1461–1475. https://doi.org/10.1007/s10853-013-7864-x

    Article  CAS  Google Scholar 

  29. Balakrishnan H, Hassan A, Wahit MU, Yussuf AA, Abdul Razak SB (2010) Novel toughened polylactic acid nanocomposite: Mechanical, thermal and morphological properties. Mater Des 31:3289–3298. https://doi.org/10.1016/j.matdes.2010.02.008

    Article  CAS  Google Scholar 

  30. Zaidi L, Bruzaud S, Bourmaud A, Me’de’ric P, Kaci M, Grohens Y (2010) Relationship between structure and rheological, mechanical and thermal properties of polylactide/cloisite 30B nanocomposites. J Appl Polym Sci 116:1357–1365. https://doi.org/10.1002/app.31655

    Article  CAS  Google Scholar 

  31. Suljovrujic E, Ignjatovic N, Uskokovic D, Mitric M, Mitrovic M, Tomic S (2007) Radiation-induced degradation of hydroxyapatite/polyL-lactide composite biomaterial. Radiat Phys Chem 76:722–728. https://doi.org/10.1016/j.radphyschem.2006.02.013

    Article  CAS  Google Scholar 

  32. Venkatesan J, Kim SK (2013) Hydroxyapatite from Marine Fish bone: isolation and characterization techniques. Marine Biomaterials Chap 2:17–28. https://doi.org/10.1201/b14723

    Article  Google Scholar 

  33. Rajesh R, Hariharasubramanian A, Ravichandran D (2012) Chicken bone as a bioresource for the bioceramic (hydroxyapatite). Phosphorus Sulfur Silicon Relat Elem 187:914–925. https://doi.org/10.1080/10426507.2011.650806

    Article  CAS  Google Scholar 

  34. Todo M, Park SD, Arakawa K, Takenoshita Y (2006) Relationship between microstructure and fracture behavior of bioabsorbable HA/PLLA composites. Compos Part A 37:2221–2225. https://doi.org/10.1016/j.compositesa.2005.10.001

    Article  CAS  Google Scholar 

  35. Ferraro V, Cruz IB, Jorge RF, Malcata FX, Pintado ME, Castro PML (2010) Valorisation of natural extracts from marine source focused on marine by-products: a review. Food Res Int 43:2221–2233. https://doi.org/10.1016/j.foodres.2010.07.034

    Article  Google Scholar 

  36. Sunil BR, Jagannatham M (2016) Producing hydroxyapatite from fish bones by heat treatment. Mater Lett 185:411–414. https://doi.org/10.1016/j.matlet.2016.09.039

    Article  CAS  Google Scholar 

  37. Yuan QH, Qin CP, Wu JB, Xu AP, Zhang ZQ, Liao JQ, Lin SX, Ren XZ, Zhang PX (2016) Synthesis and characterization of Cerium-doped hydroxyapatite/polylactic acid composite coatings on metal substrates. Mater Chem Phys 182:365–371. https://doi.org/10.1016/j.matchemphys.2016.07.044

    Article  CAS  Google Scholar 

  38. Alothman OY, Almajhdi FN, Fouad H (2013) Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration. Biomed Eng Online 12:95–109. https://doi.org/10.1186/1475-925X-12-95

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bhowmik R, Katti KS, Katti D (2007) Molecular dynamics simulation of hydroxyapatite-polyacrylic acid interfaces. Polymer 48:664–674. https://doi.org/10.1016/j.polymer.2006.11.015

    Article  CAS  Google Scholar 

  40. Kasuga T, Ota Y, Nogami M, Abe Y (2001) Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 22:19–23. https://doi.org/10.1016/S0142-9612(00)00091-0

    Article  CAS  PubMed  Google Scholar 

  41. Mohammadi M, Ziaie F, Majdabadi A, Akhavan A, Shafaei M (2017) Improvement of mechanical and thermal properties of high energy electron beam irradiated HDPE/hydroxyapatite nano-composite. Radiat Phys Chem 130:229–235. https://doi.org/10.1016/j.radphyschem.2016.09.002

    Article  CAS  Google Scholar 

  42. Ahmad Z, Mark JE (1998) Biomimetic materials: recent developments in organic-inorganic hybrids. Mater Sci Eng C 6:183–196. https://doi.org/10.1016/S0928-4931(98)00044-7

    Article  Google Scholar 

  43. Rosly MB, Jusoh N, Othman N, Abdul-Rahman H, Noah NFM, Sulaiman RNR (2019) Effect and optimization parameters of phenol removal in emulsion liquid membrane process via fractional-factorial design. Chem Eng Res Des 145:268–278. https://doi.org/10.1016/j.cherd.2019.03.007

    Article  CAS  Google Scholar 

  44. Berger S, Müller E, Schnabelrauch M (2009) Influence of methacrylate-containing surface modifiers on the mechanical properties of nano-hydroxyapatite/polylactide network composites. Mater Lett 63:2714–2717. https://doi.org/10.1016/j.matlet.2009.09.051

    Article  CAS  Google Scholar 

  45. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in green the 21st century materials word. Prog Mater Sci 50:962–1079. https://doi.org/10.1016/j.pmatsci.2005.05.002

    Article  CAS  Google Scholar 

  46. Fukushima K, Wu MH, Bocchini S, Rasyida A, Yang MC (2012) PBAT based nanocomposites for medical and industrial applications. Mater Sci Eng C 32:1331–1351. https://doi.org/10.1016/j.msec.2012.04.005

    Article  CAS  Google Scholar 

  47. Bee ST, Ratnam CT, Lee TS, Tee TT, Wong WK, Lee JX, Rahmat AR (2014) Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends. Nucl Inst Meth Phys Res B 334:18–27. https://doi.org/10.1016/j.nimb.2014.04.024

    Article  CAS  Google Scholar 

  48. Bee ST, Hassan A, Ratnam CT, Tee TT, Sin LT (2013) Investigation of nano-size montmorillonite on electron beam irradiated flame retardant polyethylene and ethylene vinyl acetate. Nucl Inst Meth Phys Res B 299:42–50. https://doi.org/10.1016/j.nimb.2013.01.040

    Article  CAS  Google Scholar 

  49. Abdal-hay A, Sheikhc FA, Lim JK (2013) Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Colloids Surf B Biointerfaces 102:635–643. https://doi.org/10.1016/j.colsurfb.2012.09.017

    Article  CAS  PubMed  Google Scholar 

  50. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602. https://doi.org/10.1016/j.progpolymsci.2006.03.002

    Article  CAS  Google Scholar 

  51. Fukushima K, Tabuani D, Arena M, Gennari M, Camino G (2013) Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. React Funct Polym 73:540–549. https://doi.org/10.1016/j.reactfunctpolym.2013.01.003

    Article  CAS  Google Scholar 

  52. Murray KA, Kennedy JE, McEvoy B, Vrain O, Ryan D, Cowman R, Higginbotham CL (2013) Effects of gamma ray and electron beam irradiation on the mechanical, thermal, structural and physicochemical properties of poly(ether-block-amide) thermoplastic elastomers. J Mech Behav Biomed Mater 17:252–268. https://doi.org/10.1016/j.jmbbm.2012.09.011

    Article  CAS  PubMed  Google Scholar 

  53. Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21:433–442. https://doi.org/10.1016/S0142-9418(01)00107-6

    Article  Google Scholar 

  54. Bee ST, Sin LT, Hoe TT, Ratnam CT, Bee SL, Rahmat AR (2018) Study of montmorillonite nanoparticles and electron beam irradiation interaction of ethylene vinyl acetate (EVA)/de-vulcanized waste rubber thermoplastic composites. Nucl Inst Meth Phys Res B 423:97–110. https://doi.org/10.1016/j.nimb.2018.03.013

    Article  CAS  Google Scholar 

  55. Bee ST, Ratnam CT, Sin LT, Tee TT, Hui D, Kadhum AAH, Rahmat AR, Lau J (2014) Effects of electron beam irradiation on mechanical properties and nanostructural-morphology of montmorillonite added polyvinyl alcohol composite. Compos Part B Eng 63:141–153. https://doi.org/10.1016/j.compositesb.2014.03.021

    Article  CAS  Google Scholar 

  56. Rahmani P, Dadbin S, Frounchi M (2014) Electron beam induced modifications in crystalline structure of polyvinylidene fluoride/nanoclay composites. Radiat Meas 60:1–6. https://doi.org/10.1016/j.radmeas.2013.10.007

    Article  CAS  Google Scholar 

  57. Milicevic D, Trifunovic Galovic S, Suljovrujic E (2007) Thermal and crystallization behaviour of gamma irradiated PLLA. Radiat Phys Chem 76:1376–1380. https://doi.org/10.1016/j.radphyschem.2007.02.035

    Article  CAS  Google Scholar 

  58. Neppalli R, Causin V, Marega C, Modesti M, Adhikari R, Scholtyssek S, Ray SS, Marigo A (2014) The effect of different clays on the structure, morphology and degradation behavior of poly (lactic acid). Appl Clay Sci 87:278–284. https://doi.org/10.1016/j.clay.2013.11.029

    Article  CAS  Google Scholar 

  59. Thellen C, Orroth C, Froio D, Ziegler D, Lucciarini J, Farrell R, D’Souza NA, Ratto JA (2005) Influence of montmorillonite layered silicate on plasticized poly (L-Lactide) blown films. Polymer 46:11716–11727. https://doi.org/10.1016/j.polymer.2005.09.057

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo-Tueen Bee or Lee Tin Sin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, H.M., Bee, ST., Sin, L.T. et al. Optimization study on properties of poly (lactic acid) (PLA) composites filled with Scomberomorus guttatus-derived hydroxyapatite and montmorillonite (MMT) under electron beam irradiation. Polym. Bull. 79, 8823–8864 (2022). https://doi.org/10.1007/s00289-021-03892-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03892-7

Keywords

Navigation