Skip to main content

Advertisement

Log in

Curing kinetics of poly(furfuryl alcohol) resin: a fractionation and molecular weight study

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyfurfuryl alcohol (PFA) resin consists of low and high molecular weight oligomeric chains which are differently involved in cross-linking reactions. The dependence of PFA curing kinetics to its molecular weight was investigated by differential scanning calorimetry. To this end, PFA resin was synthesized by cationic polymerization of furfuryl alcohol in the presence of maleic anhydride and fractionated to four fractions by precipitation fractionation. The fractionation efficiency was then examined by software-based deconvolution of GPC chromatograms. Effect of molecular weight of the fractions on their curing kinetics was studied by determining the curing enthalpy and activation energy using Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa isoconversional models. A reduction in molecular weight, e.g., 291.72 g.mol−1, resulted in a 20 kJ mol−1 drop in the cure activation energy and decreased the curing enthalpies, eq. 9.57, 7.97 and 9.87 J.g−1 at heating rates of 5, 10 and 15 °C.min−1, respectively. Taking such dependency into consideration, a curing mechanism was highlighted among different reported mechanisms for PFA cross-linking reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sugama T, Kukacka LE, Carciello N, Warren JB (1985) Adhesion aspects of levulinic-acid-modified furan polymers to crystalline zinc phosphate metal surfaces. J Appl Polym Sci 30:2137–2155. https://doi.org/10.1002/app.1985.070300528

    Article  CAS  Google Scholar 

  2. Quist IP, Railton JD, Lemon PHRB (1984) Foundry molding compositions and process. U.S. Patent No. 4,426,467. 17 Jan. 1984.

  3. Ozaki JI, Mitsui M, Nishiyama Y, Cashion JD, Brown LJ (1998) Effects of ferrocene on production of high performance carbon electrodes from poly(Furfuryl Alcohol). Chem Mater 10:3386–3392. https://doi.org/10.1021/cm980081m

    Article  CAS  Google Scholar 

  4. Gandini A, Belgacem MN (1997) Furans in polymer chemistry. Prog Polym Sci 22:1203–1379. https://doi.org/10.1016/S0079-6700(97)00004-X

    Article  CAS  Google Scholar 

  5. Grant B (1953) The Furans. Reinhold Pub. Corp, New York, pp 398–399

    Google Scholar 

  6. Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources. Elsevier, The Netherlands

  7. Moreau C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27:11–30. https://doi.org/10.1023/B:TOCA.0000013537.13540.0e

    Article  CAS  Google Scholar 

  8. Çiftçi H, Öktem Z, Testereci HN (2012) Polymers from renewable resources: synthesis and characterization of poly(2,5-dihydro-2,5-dimethoxy furan). Turkish J Chem 36:315–322. https://doi.org/10.3906/kim-1103-66

    Article  CAS  Google Scholar 

  9. González R, Rieumont J, Ortiz P, Mendoza L, Radilla J, González M (2001) Influence of water on the cationic polymerisation of 2-ethenylfuran by trifluoroacetic acid in methylene dichloride. Macromol Chem Phys 202:710–718. https://doi.org/10.1002/1521-3935(20010301)202:5%3c710::AID-MACP710%3e3.0.CO;2-O

    Article  Google Scholar 

  10. Kim T, Assary RS, Kim H, Marshall CL, Gosztola DJ, Curtiss LA, Stair PC (2013) Effects of solvent on the furfuryl alcohol polymerization reaction: UV Raman spectroscopy study. Catal Today 205:60–66. https://doi.org/10.1016/j.cattod.2012.09.033

    Article  CAS  Google Scholar 

  11. Wewerka EM, Loughran ED, Walters KL (1971) A study of the low molecular weight components of furfuryl alcohol polymers. J Appl Polym Sci 15:1437–1451. https://doi.org/10.1002/app.1971.070150612

    Article  CAS  Google Scholar 

  12. González R, Martínez R, Ortíz P (1992) Polymerization of furfuryl alcohol with trifluoroacetic acid, 2. The formation of difurfuryl ether. Die Makromol Chemie, Rapid Commun 13:517–523. https://doi.org/10.1002/marc.1992.030131107

    Article  Google Scholar 

  13. Kim T, Assary RS, Marshall CL, Gosztola DJ, Curtiss LA, Stair PC (2011) Acid-catalyzed furfuryl alcohol polymerization: characterizations of molecular structure and thermodynamic properties. ChemCatChem 3:1451–1458. https://doi.org/10.1002/cctc.201100098

    Article  CAS  Google Scholar 

  14. González R, Rieumont J, Figueroa JM, Siller J, González H (2002) Kinetics of furfuryl alcohol polymerisation by iodine in methylene dichloride. Eur Polym J 38:281–286. https://doi.org/10.1016/S0014-3057(01)00091-X

    Article  Google Scholar 

  15. Choura M, Belgacem NM, Gandini A (1996) Acid-catalyzed polycondensation of furfuryl alcohol: mechanisms of chromophore formation and cross-linking. Macromolecules 29:3839–3850. https://doi.org/10.1021/ma951522f

    Article  CAS  Google Scholar 

  16. Gheneim R, Perez-Berumen C, Gandini A (2002) Diels-Alder reactions with novel polymeric dienes and dienophiles: synthesis of reversibly cross-linked elastomers. Macromolecules 35:7246–7253. https://doi.org/10.1021/ma020343c

    Article  CAS  Google Scholar 

  17. Dodiuk H, Goodman SH (2013) Handbook of thermoset plastics. Elsevier Science, The Netherlands

    Google Scholar 

  18. Vyazovkin S (2001) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22:178–183. https://doi.org/10.1002/1096-987x(20010130)22:2%3c178::aid-jcc5%3e3.0.co;2-%23

    Article  CAS  Google Scholar 

  19. Leitheiser RH, Johns WE (1983) Isocyanate/furfural blends - binders for wood composites. In: Proceedings of the Washington State University International Symposium on Particleboard. pp 249–258

  20. Sbirrazzuoli N, Mititelu-Mija A, Vincent L, Alzina C (2006) Isoconversional kinetic analysis of stoichiometric and off-stoichiometric epoxy-amine cures. Thermochim Acta 447:167–177. https://doi.org/10.1016/j.tca.2006.06.005

    Article  CAS  Google Scholar 

  21. Ferdosian F, Ebrahimi M, Jannesari A (2013) Curing kinetics of solid epoxy/DDM/nanoclay: Isoconversional models versus fitting model. Thermochim Acta 568:67–73. https://doi.org/10.1016/j.tca.2013.06.001

    Article  CAS  Google Scholar 

  22. Jovičić M, Radičević R, Pavličević J, Bera O (2013) Izučavanje kinetike umrežavanja alkid/melminskih smola modelima izokonverzije. Chem Ind Chem Eng Q 19:253–262. https://doi.org/10.2298/CICEQ111110059J

    Article  CAS  Google Scholar 

  23. Vyazovkin S, Wight CA (1999) Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta 340–341:53–68. https://doi.org/10.1016/s0040-6031(99)00253-1

    Article  Google Scholar 

  24. Akahira T, Sunose T (1971) Joint convention of four electrical institutes. Research report (Chiba Institute of technology). Sci Technol 16:22–31

    Google Scholar 

  25. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886. https://doi.org/10.1246/bcsj.38.1881

    Article  CAS  Google Scholar 

  26. Lopez De Vergara U, Sarrionandia M, Gondra K, Aurrekoetxea J (2014) Polymerization and curing kinetics of furan resins under conventional and microwave heating. Thermochim Acta 581:92–99. https://doi.org/10.1016/j.tca.2014.02.017

    Article  CAS  Google Scholar 

  27. Guigo N, Mija A, Vincent L, Sbirrazzuoli N (2007) Chemorheological analysis and model-free kinetics of acid catalysed furfuryl alcohol polymerization. Phys Chem Chem Phys 9:5359–5366. https://doi.org/10.1039/b707950h

    Article  CAS  PubMed  Google Scholar 

  28. Domínguez JC, Grivel JC, Madsen B (2012) Study on the non-isothermal curing kinetics of a polyfurfuryl alcohol bioresin by DSC using different amounts of catalyst. Thermochim Acta 529:29–35. https://doi.org/10.1016/j.tca.2011.11.018

    Article  CAS  Google Scholar 

  29. Zavaglia R, Guigo N, Sbirrazzuoli N, Mija A, Vincent L (2012) Complex kinetic pathway of furfuryl alcohol polymerization catalyzed by green montmorillonite clays. J Phys Chem B 116:8259–8268. https://doi.org/10.1021/jp301439q

    Article  CAS  PubMed  Google Scholar 

  30. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27:1515–1532. https://doi.org/10.1002/marc.200600404

    Article  CAS  Google Scholar 

  31. González R, Martínez R, Ortiz P (1992) Polymerization of furfuryl alcohol with trifluoroacetic acid: the influence of experimental conditions. Die Makromol Chemie 193:1–9

    Article  Google Scholar 

  32. González R, Figueroa JM, González H (2002) Furfuryl alcohol polymerisation by iodine in methylene chloride. Eur Polym J 38:287–297

    Article  Google Scholar 

  33. Ünver H, Öktem Z (2013) Controlled cationic polymerization of furfuryl alcohol. Eur Polym J 49:1023–1030. https://doi.org/10.1016/j.eurpolymj.2013.01.025

    Article  CAS  Google Scholar 

  34. Principe M, Ortiz P, Martínez R (1999) An NMR study of poly(furfuryl alcohol) prepared with p-toluenesulphonic acid. Polym Int 48:637–641. https://doi.org/10.1002/(sici)1097-0126(199908)48:8%3c637::aid-pi206%3e3.0.co;2-c

    Article  CAS  Google Scholar 

  35. Fawcett AH, Dadamba W (1982) Characterization of furfuryl alcohol oligomers by 1H and 13C NMR spectroscopy. Die Makromol Chemie 183:2799–2809. https://doi.org/10.1002/macp.1982.021831115

    Article  CAS  Google Scholar 

  36. Conley RT, Metil I (1963) An investigation of the structure of furfuryl alcohol polycondensates with infrared spectroscopy. J Appl Polym Sci 7:37–52. https://doi.org/10.1002/app.1963.070070104

    Article  CAS  Google Scholar 

  37. Aboulkas A, El HK (2008) Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen. Oil Shale 25:426–443. https://doi.org/10.3176/oil.2008.4.04

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded (#23794105 and #23761129) by Iran Polymer and Petrochemical Institute (IPPI). The authors express their gratitude for kind support by IPPI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Imani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behzadfar, A., Imani, M. & Farahmandghavi, F. Curing kinetics of poly(furfuryl alcohol) resin: a fractionation and molecular weight study. Polym. Bull. 79, 7871–7890 (2022). https://doi.org/10.1007/s00289-021-03882-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03882-9

Keywords

Navigation