Skip to main content
Log in

Rheological and simulation for macromolecular matrix epoxy bi-functional aromatic amines

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The rheological behaviors of four aromatic amine-based epoxy monomers for were evaluated and compared. The four epoxy monomers are useful for making cross-linked epoxy resin, the monomers are triglycidyl-2 aminophenol (TGAP), triglycidyl-2-aminothiophenol (TGATP), tetra-functional tetraglycidyl-1,2-phenylenediamine (TGPDA), and tetraglycidyl-4-methyl-1,2-phenylenediamine (TGMPDA). The monomers were cured with 4, 4’-methylene dianiline (MDA). The rheological behaviors of the cured products were also evaluated. The cured epoxy monomers were characterized by FT-IR and the curing process was monitored using a Haake Mars rheometer equipped with a cone-plate geometry. During the curing process, the change in the viscosity was monitored as a function of time at various temperatures. The temperatures ranged from 120 °C to 150 °C. The curing process was temperature dependent; at 150 and 120 °C, a sharp rise in the viscosity was observed. The viscosity of TGPDA-MDA and TGMPDA-MDA (tetra-functional) showed a higher increase in the viscosity compared to other matrices an indication of faster formation of the 3D network. The storage moduli G’ and the loss moduli and G” conditions of the macromolecular matrix structures of TGMPDA-MDA was higher than that of the macromolecular matrix structures of TGAP-MDA, TGATP-MDA and TGPDA-MDA. Quantum chemical calculations were performed using the density functional theory (DFT) to investigate the influence of electronic and molecular structure of the investigated compounds before and after cross-linking with MDA unit(s) of the examined epoxy resins.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ruan K, Zhong X, Shi X, Dang J, Gu J (2021) Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: a mini-review. Mater Today Phys 20:100456

    Article  CAS  Google Scholar 

  2. Hsu Y-I, Huang L, Asoh T-A, Uyama H (2020) Anhydride-cured epoxy resin reinforcing with citric acid-modified cellulose. Polym Degrad Stab 178:109213

    Article  CAS  Google Scholar 

  3. Rad ER, Vahabi H, de Anda AR, Saeb MR, Thomas S (2019) Bio-epoxy resins with inherent flame retardancy. Prog Org Coat 135:608–612

    Article  CAS  Google Scholar 

  4. Verma C, Olasunkanmi LO, Akpan ED, Quraishi M, Dagdag O et al (2020) Epoxy resins as anticorrosive polymeric materials: a review. React Funct Polym 156:104741

    Article  CAS  Google Scholar 

  5. Zhang Y, Pang H, Wei D, Li J, Li S et al (2019) Preparation and characterization of chemical grouting derived from lignin epoxy resin. Eur Polymer J 118:290–305

    Article  CAS  Google Scholar 

  6. Dagdag O, El Gouri M, El Mansouri A, Outzourhit A, El Harfi A et al (2020) Rheological and electrical study of a composite material based on an epoxy polymer containing cyclotriphosphazene. Polymers 12:921

    Article  CAS  PubMed Central  Google Scholar 

  7. Dagdag O, Hamed O, Erramli H, El Harfi A (2018) Anticorrosive performance approach combining an epoxy polyaminoamide–zinc phosphate coatings applied on sulfo-tartaric anodized aluminum alloy 5086. Journal of Bio-and Tribo-Corrosion 4:1–11

    Article  Google Scholar 

  8. Dagdag O, Berisha A, Safi Z, Dagdag S, Berrani M et al (2020) Highly durable macromolecular epoxy resin as anticorrosive coating material for carbon steel in 3% NaCl: Computational supported experimental studies. J Appl Polym Sci 137:49003

    Article  CAS  Google Scholar 

  9. Li M, Zhang H, Wu W, Li M, Xu Y et al (2019) A novel poss-based copolymer functionalized graphene: an effective flame retardant for reducing the flammability of epoxy resin. Polymers 11:241

    Article  PubMed Central  Google Scholar 

  10. Greiner L, Kukla P, Eibl S, Döring M (2019) Phosphorus containing polyacrylamides as flame retardants for epoxy-based composites in aviation. Polymers 11:284

    Article  PubMed Central  Google Scholar 

  11. Dagdag O, El Bachiri A, Hamed O, Haldhar R, Verma C, et al. 2021. Dendrimeric epoxy resins based on hexachlorocyclotriphosphazene as a reactive flame retardant polymeric materials: a review. Journal of Inorganic and Organometallic Polymers and Materials:1–22

  12. Liu C, Sun M, Zhang B, Zhang X, Xue G, Zhang X (2019) Diamine-functional bisphthalonitrile: synthesis, characterization and its application in curing epoxy resin. Eur Polym J 121:109304

    Article  CAS  Google Scholar 

  13. Zhang D, Wang R, Farhan S, Cai Y, Liu J (2018) Chemorheological behaviors of TDE-85 toughened by low viscosity liquid epoxy for RTM process. Polym Testing 70:310–319

    Article  CAS  Google Scholar 

  14. Dagdag O, Bouchti M, Cherkaoui O, Hamed O, Gouri M, Dagdag S (2019) A study on thermal and rheological cure characterization of a sulfur-containing epoxy resin. J Chem Techno Metallurgy 54:881–888

    CAS  Google Scholar 

  15. Zheng T, Wang X, Lu C, Zhang X, Ji Y et al (2019) Studies on curing kinetics and tensile properties of silica-filled phenolic amine/epoxy resin nanocomposite. Polymers 11:680

    Article  CAS  PubMed Central  Google Scholar 

  16. Hsissou R, Dagdag O, Berradi M, El Bouchti M, Assouag M, Elharfi A (2019) Development rheological and anti-corrosion property of epoxy polymer and its composite. Heliyon 5:e02789

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hsissou R, Dagdag O, Berradi M, El Bouchti M, Assouag M et al (2019) Investigation of structure and rheological behavior of a new epoxy polymer pentaglycidyl ether pentabisphenol A of phosphorus and of its composite with natural phosphate. SN Appl Sci 1:1–9

    Article  CAS  Google Scholar 

  18. Zhao C, Zhang G, Zhao L (2012) Effect of curing agent and temperature on the rheological behavior of epoxy resin systems. Molecules 17:8587–8594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee J-S, Kim Y-S, Song K-W (2015) Transient rheological behavior of natural polysaccharide xanthan gum solutions in start-up shear flow fields: an experimental study using a strain-controlled rheometer. Korea-Australia Rheology Journal 27:227–239

    Article  Google Scholar 

  20. Chae DW, Nam Y, An SG, Cho CG, Lee EJ, Kim BC (2017) Effects of molecular architecture on the rheological and physical properties of polycaprolactone. Korea-Australia Rheology Journal 29:129–135

    Article  Google Scholar 

  21. Hsissou R, Bekhta A, Dagdag O, El Bachiri A, Rafik M, Elharfi A (2020) Rheological properties of composite polymers and hybrid nanocomposites. Heliyon 6:e04187

    Article  PubMed  PubMed Central  Google Scholar 

  22. Thomas R, Yumei D, Yuelong H, Le Y, Moldenaers P et al (2008) Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 49:278–294

    Article  Google Scholar 

  23. Kaffashi B, Kaveh A, Jazani OM, Saeb M (2012) Improving rheological properties of covalently MWCNT/epoxy nanocomposites via surface re-modification. Polym Bull 68:2187–2197

    Article  CAS  Google Scholar 

  24. Liu Y, Wilkinson A (2018) Rheological percolation behaviour and fracture properties of nanocomposites of MWCNTs and a highly crosslinked aerospace-grade epoxy resin system. Compos A Appl Sci Manuf 105:97–107

    Article  CAS  Google Scholar 

  25. Dagdag O, Essamri A, El Gana L, El Bouchti M, Hamed O et al (2019) Synthesis, characterization and rheological properties of epoxy monomers derived from bifunctional aromatic amines. Polym Bull 76:4399–4413

    Article  CAS  Google Scholar 

  26. Dagdag O, Safi Z, Hamed O, Jodeh S, Wazzan N et al (2021) Comparative study of some epoxy polymers based on bisphenolic and aromatic diamines: synthesis, viscosity, thermal properties computational and statistical approaches. J Polym Res 28:1–16

    Article  Google Scholar 

  27. Dagdag O, Safi Z, Erramli H, Wazzan N, Obot I et al (2019) Anticorrosive property of heterocyclic based epoxy resins on carbon steel corrosion in acidic medium: electrochemical, surface morphology, DFT and Monte Carlo simulation studies. J Mole Liq 287:110977

    Article  CAS  Google Scholar 

  28. Khalina M, Beheshty MH, Salimi A (2019) The effect of reactive diluent on mechanical properties and microstructure of epoxy resins. Polym Bull 76:3905–3927

    Article  CAS  Google Scholar 

  29. Yu Z, Di H, Ma Y, Lv L, Pan Y et al (2015) Fabrication of graphene oxide–alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings. Appl Surf Sci 351:986–996

    Article  CAS  Google Scholar 

  30. Jing C, Lei Y, Jieping Z, Sidong L, Yongjun C, Kui X (2013) Drying kinetics and cross-linking of sulfur prevulcanized thick natural rubber latex film. Rubber Chem Technol 86:57–67

    Article  Google Scholar 

  31. Liu X, Shao Y, Zhang Y, Meng G, Zhang T, Wang F (2015) Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating–I. High-temperature ball milling treat Corros Sci 90:451–462

    CAS  Google Scholar 

  32. Ollier RP, Penoff ME, Alvarez VA (2016) Microencapsulation of epoxy resins: optimization of synthesis conditions. Colloids Surf, A 511:27–38

    Article  CAS  Google Scholar 

  33. Varley RJ (2007) Reaction kinetics and phase transformations during cure of a thermoplastic-modified epoxy thermoset. Macromol Mater Eng 292:46–61

    Article  CAS  Google Scholar 

  34. Yu Y, Wang M, Foix D, Li S (2008) Rheological study of epoxy systems blended with poly (ether sulfone) of different molecular weights. Ind Eng Chem Res 47:9361–9369

    Article  CAS  Google Scholar 

  35. Bonnet A, Pascault J, Sautereau H, Camberlin Y (1999) Epoxy− diamine thermoset/thermoplastic blends. 2. Rheological behavior before and after phase separation. Macromolecules 32:8524–8530

    Article  CAS  Google Scholar 

  36. Kim H, Kookheon C (2000) Rheological behavior during the phase separation of thermoset epoxy/thermoplastic polymer blends. Korea-Aust Rheol J 12:77–81

    Google Scholar 

  37. Mounif E, Bellenger V, Mazabraud P, Nony F, Tcharkhtchi A (2010) Chemorheological study of DGEBA/IPD system for reactive rotational molding (RRM). J Appl Polym Sci 116:969–976

    Article  CAS  Google Scholar 

  38. Lee S-B, Hong I-K (2011) Thermal deformation of epoxy type resin for neon transformer housing. J Ind Eng Chem 17:404–409

    Article  CAS  Google Scholar 

  39. Zhu J, Wei S, Yadav A, Guo Z (2010) Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in-situ stabilized carbon nanofibers. Polymer 51:2643–2651

    Article  CAS  Google Scholar 

  40. Mravljak M, Šernek M (2011) The influence of curing temperature on rheological properties of epoxy adhesives. Drvna industrija: Znanstveni časopis za pitanja drvne tehnologije 62:19–25

    Article  Google Scholar 

  41. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoret Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  42. Gaussian09 RA 2009 1, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, v. Barone, b. Mennucci, ga petersson et al., gaussian. Inc Wallingford CT 121 150 166

  43. Guo L, Safi ZS, Kaya S, Shi W, Tüzün B et al (2018) Anticorrosive effects of some thiophene derivatives against the corrosion of iron: a computational study. Front Chem 6:155

    Article  PubMed  PubMed Central  Google Scholar 

  44. Erdoğan Ş, Safi ZS, Kaya S, Işın DÖ, Guo L, Kaya C (2017) A computational study on corrosion inhibition performances of novel quinoline derivatives against the corrosion of iron. J Mol Struct 1134:751–761

    Article  Google Scholar 

  45. Dagdag O, Berisha A, Safi Z, Hamed O, Jodeh S et al (2020) DGEBA-polyaminoamide as effective anti-corrosive material for 15CDV6 steel in NaCl medium: Computational and experimental studies. J Appl Polym Sci 137:48402

    Article  CAS  Google Scholar 

  46. Martinez S (2003) Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms. Mater Chem Phys 77:97–102

    Article  CAS  Google Scholar 

  47. Dagdag O, Safi Z, Wazzan N, Erramli H, Guo L et al (2020) Highly functionalized epoxy macromolecule as an anti-corrosive material for carbon steel: computational (DFT, MDS), surface (SEM-EDS) and electrochemical (OCP, PDP, EIS) studies. J Mole Liq 302:112535

    Article  CAS  Google Scholar 

  48. Dagdag O, Safi Z, Erramli H, Wazzan N, Guo L et al (2020) Epoxy prepolymer as a novel anti-corrosive material for carbon steel in acidic solution: Electrochemical, surface and computational studies. Mater Today Commun 22:100800

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledges King Abdulaziz University's High Performance Computing Centre (Aziz Supercomputer) (http://hpc.kau.edu.sa) for assisting with the calculations presented in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. Dagdag or S. Jodeh.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagdag, O., Hsissou, R., Safi, Z. et al. Rheological and simulation for macromolecular matrix epoxy bi-functional aromatic amines. Polym. Bull. 79, 7571–7587 (2022). https://doi.org/10.1007/s00289-021-03862-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03862-z

Keywords

Navigation