Skip to main content
Log in

Thermo-responsive release of rhodamine B in the pore-selective poly(N-isopropylacrylamide) immobilized honeycomb-patterned porous film

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A new type of thermo-responsive polymer film is fabricated by the immobilization of poly(N-isopropylacrylamide) (PNIPAAm) to the pore-selectively carboxyl group functionalized honeycomb-patterned porous polystyrene film. To check the smartness of the film to the temperature change, the thermo-responsive release of rhodamine B (RB) above the lower critical solution temperature (LCST) (~32.5 °C) of the PNIPAAm was studied together with the change in morphology of the pore surface by the scanning electron microscopy (SEM). The thermo-responsive release was monitored by the UV–vis absorbance at a fixed wavelength of λmax of RB ~553 nm. The absorbance of λmax in the equilibrium state significantly increased with the increase in temperature above the LCST of PNIPAAm. The result of the SEM image showed a higher rugged surface morphology with a temperature above the LCST which indicates that the change in the pore surface from the coil to globule state supports the thermo-responsive swell and de-swelling state of PNIPAAm. Temperature-dependent RB release kinetics was performed at 25–40 °C. The result showed pseudo-first-order kinetics by the Korsmeyer-Peppas model. The transport exponent (n) is higher than 1 as ~6.66 above the LCST region which is indicating the temperature responsive release by the change in PNIPAAm morphology.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ding Z, Chen G, Hoffman AS (1998) Unusual properties of thermally sensitive oligomer–enzyme conjugates of poly (N-isopropylacrylamide)–trypsin. J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater 39(3):498–505

    Article  CAS  Google Scholar 

  2. Stayton PS, Shimoboji T, Long C, Chilkoti A, Ghen G, Harris JM, Hoffman AS (1995) Control of protein–ligand recognition using a stimuli-responsive polymer. Nature 378(6556):472–474. https://doi.org/10.1038/378472a0

    Article  CAS  PubMed  Google Scholar 

  3. Abu Elella MH, Goda ES, Gab-Allah MA, Hong SE, Pandit B, Lee S, Gamal H, Rehman Au, Yoon KR (2021) Xanthan gum-derived materials for applications in environment and eco-friendly materials: a review. J Environ Chem Eng 9(1):104702. https://doi.org/10.1016/j.jece.2020.104702

    Article  CAS  Google Scholar 

  4. Hu Z, Chen Y, Wang C, Zheng Y, Li Y (1998) Polymer gels with engineered environmentally responsive surface patterns. Nature 393(6681):149–152. https://doi.org/10.1038/30205

    Article  CAS  Google Scholar 

  5. Abu Elella MH, Hanna DH, Mohamed RR, Sabaa MW (2021) Synthesis of xanthan gum/trimethyl chitosan interpolyelectrolyte complex as pH-sensitive protein carrier. Polym Bull. https://doi.org/10.1007/s00289-021-03656-3

    Article  Google Scholar 

  6. Abu Elella MH, Sabaa M, Hanna DH, Abdel-Aziz MM, Mohamed RR (2020) Antimicrobial pH-sensitive protein carrier based on modified xanthan gum. J Drug Deliv Sci Technol 57:101673. https://doi.org/10.1016/j.jddst.2020.101673

    Article  CAS  Google Scholar 

  7. Hrouz J, Ilavský M, Ulbrich K, Kopeček J (1981) The photoelastic behaviour of dry and swollen networks of poly (N,N-diethylacrylamide) and of its copolymer with N-tert butylacrylamide. Eur Polym J 17(4):361–366. https://doi.org/10.1016/0014-3057(81)90137-3

    Article  CAS  Google Scholar 

  8. Kwon IC, Bae YH, Kim SW (1991) Electrically erodible polymer gel for controlled release of drugs. Nature 354(6351):291–293. https://doi.org/10.1038/354291a0

    Article  CAS  PubMed  Google Scholar 

  9. Kokufuta E, Tanaka T (1991) Biochemically controlled thermal phase transition of gels. Macromolecules 24(7):1605–1607. https://doi.org/10.1021/ma00007a024

    Article  CAS  Google Scholar 

  10. Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346(6282):345–347. https://doi.org/10.1038/346345a0

    Article  CAS  Google Scholar 

  11. Packhaeuser C, Schnieders J, Oster C, Kissel T (2004) In situ forming parenteral drug delivery systems: an overview. Eur J Pharm Biopharm 58(2):445–455. https://doi.org/10.1016/j.ejpb.2004.03.003

    Article  CAS  PubMed  Google Scholar 

  12. Hatefi A, Amsden B (2002) Biodegradable injectable in situ forming drug delivery systems. J Control Release 80(1–3):9–28. https://doi.org/10.1016/s0168-3659(02)00008-1

    Article  CAS  PubMed  Google Scholar 

  13. Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388(6645):860–862. https://doi.org/10.1038/42218

    Article  CAS  PubMed  Google Scholar 

  14. Jeong B, Gutowska A (2002) Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 20(7):305–311. https://doi.org/10.1016/S0167-7799(02)01962-5

    Article  CAS  PubMed  Google Scholar 

  15. Abu Elella MH, Goda ES, Abdallah HM, Shalan AE, Gamal H, Yoon KR (2021) Innovative bactericidal adsorbents containing modified xanthan gum/montmorillonite nanocomposites for wastewater treatment. Int J Biol Macromol 167:1113–1125. https://doi.org/10.1016/j.ijbiomac.2020.11.065

    Article  CAS  PubMed  Google Scholar 

  16. Goda ES, Abu Elella MH, Sohail M, Singu BS, Pandit B, El Shafey AM, Aboraia AM, Gamal H, Hong SE, Yoon KR (2021) N-methylene phosphonic acid chitosan/graphene sheets decorated with silver nanoparticles as green antimicrobial agents. Int J Biol Macromol 182:680–688. https://doi.org/10.1016/j.ijbiomac.2021.04.024

    Article  CAS  PubMed  Google Scholar 

  17. Abdel-Aziz MM, Elella MHA, Mohamed RR (2020) Green synthesis of quaternized chitosan/silver nanocomposites for targeting mycobacterium tuberculosis and lung carcinoma cells (A-549). Int J Biol Macromol 142:244–253. https://doi.org/10.1016/j.ijbiomac.2019.09.096

    Article  CAS  PubMed  Google Scholar 

  18. Elella MHA, Abdel-Aziz MM, Abd El-Ghany NA (2021) Synthesis of a high-performance antimicrobial o-quaternized alginate–a promising potential antimicrobial agent. Cellul Chem Technol 55:75–86

    Article  Google Scholar 

  19. Abu Elella MH, Goda ES, Yoon KR, Hong SE, Morsy MS, Sadak RA, Gamal H (2021) Novel vapor polymerization for integrating flame retardant textile with multifunctional properties. Compos Commun 24:100614. https://doi.org/10.1016/j.coco.2020.100614

    Article  Google Scholar 

  20. Goda ES, Elella MHA, Hong SE, Pandit B, Yoon KR, Gamal H (2021) Smart flame retardant coating containing carboxymethyl chitosan nanoparticles decorated graphene for obtaining multifunctional textiles. Cellulose 28(8):5087–5105

    Article  CAS  Google Scholar 

  21. Huffman AS, Afrassiabi A, Dong LC (1986) Thermally reversible hydrogels: II. Delivery and selective removal of substances from aqueous solutions. J Controlled Release 4(3):213–222. https://doi.org/10.1016/0168-3659(86)90005-2

    Article  Google Scholar 

  22. Bae Y, Okano T, Hsu R, Kim S (1987) Makro-hydrogen bonding interactions between amide mol. Chem Rapid Commun 8:481

    Article  CAS  Google Scholar 

  23. Chaterji S, Kwon IK, Park K (2007) Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci 32(8–9):1083–1122. https://doi.org/10.1016/j.progpolymsci.2007.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70(3):1214–1218. https://doi.org/10.1016/j.ijsolstr.2005.03.031

    Article  CAS  Google Scholar 

  25. Kuckling D, Vo CD, Adler H-J, Völkel A, Cölfen H (2006) Preparation and characterization of photo-cross-linked thermosensitive PNIPAAm nanogels. Macromolecules 39(4):1585–1591. https://doi.org/10.1021/ma052227q

    Article  CAS  Google Scholar 

  26. Kuckling D, Vo CD, Wohlrab SE (2002) Preparation of nanogels with temperature-responsive core and pH-responsive arms by photo-cross-linking. Langmuir 18(11):4263–4269. https://doi.org/10.1021/la015758q

    Article  CAS  Google Scholar 

  27. Pitois O, François B (1999) Crystallization of condensation droplets on a liquid surface. Colloid Polym Sci 277(6):574–578. https://doi.org/10.1007/s003960050427

    Article  CAS  Google Scholar 

  28. Kim JK, Kim KI, Basavaraja C, Rabai G, Huh DS (2013) Reversible adsorption–desorption oscillations of nanoparticles on a patterned hydrogel surface induced by a pH oscillator in a closed chemical system. J Phys Chem B 117(20):6294–6303. https://doi.org/10.1021/jp401100z

    Article  CAS  PubMed  Google Scholar 

  29. Jang JH, Orbán M, Wang S (2014) Adsorption–desorption oscillations of nanoparticles on a honeycomb-patterned pH-responsive hydrogel surface in a closed reaction system. Phys Chem Chem Phys 16(46):25296–25305

    Article  CAS  Google Scholar 

  30. Kim JK, Basavaraja C, Yamaguchi T (2013) Preparation and characterization of smart hydrogel nanocomposites sensitive to oxidation–reduction. Polym Bull 70(1):207–220. https://doi.org/10.1007/s00289-012-0825-8

    Article  CAS  Google Scholar 

  31. Modigunta JKR, Kim JM, Cao TT, Yabu H (2020) Pore-selective modification of the honeycomb-patterned porous polystyrene film with poly (N-isopropylacrylamide) and application for thermo-responsive smart material. Polymer 201:122630. https://doi.org/10.1016/j.polymer.2020.122630

    Article  CAS  Google Scholar 

  32. Kahovec J (1981) Aldehyde functionalization of styrene polymers. Polym Bull 4(12):731–733

    Article  CAS  Google Scholar 

  33. Al-Kadhemy MFH, Rasheed ZS, Salim SR (2016) Fourier transform infrared spectroscopy for irradiation coumarin doped polystyrene polymer films by alpha ray. J Radiat Res Appl Sci 9(3):321–331. https://doi.org/10.1016/j.jrras.2016.02.004

    Article  CAS  Google Scholar 

  34. Shang J, Chai M, Zhu Y (2003) Solid-phase photocatalytic degradation of polystyrene plastic with TiO2 as photocatalyst. J Solid State Chem 174(1):104–110. https://doi.org/10.1016/S0022-4596(03)00183-X

    Article  CAS  Google Scholar 

  35. Zhang B, Lu J, Liu X, Jin H, He G, Guo X (2018) Synthesis of controllable carboxylated polystyrene microspheres by two-step dispersion polymerization with hydrocarbon alcohols. Int J Polym Sci. https://doi.org/10.1155/2018/8702597

    Article  Google Scholar 

  36. Cheng Y-H, Chen W-P, Shen Z, Fan X-H, Zhu M-F, Zhou Q-F (2011) Influences of hydrogen bonding and peripheral chain length on mesophase structures of mesogen-jacketed liquid crystalline polymers with amide side-chain linkages. Macromolecules 44(6):1429–1437. https://doi.org/10.1039/B814540G

    Article  CAS  Google Scholar 

  37. Farag A, Yahia I (2010) Structural, absorption and optical dispersion characteristics of rhodamine B thin films prepared by drop casting technique. Optics Commun 283(21):4310–4317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (Grant No. 2021-R1F1A1052602).

Author information

Authors and Affiliations

Authors

Contributions

Jun Mo Kim Conceptualization, Data curation, Formal analysis, Investigation, Methodology. Shahkar Falak Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing—review and editing. Do Sung Huh Conceptualization, Formal analysis, Funding acquisition, Investigation, Project administration, Resources, Supervision, Validation, Visualization, Writing—original draft, Writing—review and editing.

Corresponding author

Correspondence to Do Sung Huh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.M., Falak, S. & Huh, D.S. Thermo-responsive release of rhodamine B in the pore-selective poly(N-isopropylacrylamide) immobilized honeycomb-patterned porous film. Polym. Bull. 79, 1911–1928 (2022). https://doi.org/10.1007/s00289-021-03861-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03861-0

Keywords

Navigation