Skip to main content
Log in

Fluorescence and structural properties of polyvinyl alcohol fibers modified with multiwalled carbon nanotubes-hyperbranched poly (phenylalanine-lysine)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In order to significantly enhance the fluorescence and mechanical properties of polyvinyl alcohol (PVA) fluorescent fibers, HBP(P-L) is synthesized by lysine, phenylalanine and N,N-methylene bisacrylamide via Michael addition reaction. Acidified multiwalled carbon nanotubes (MWCNTs) are added in HBP(P-L) solution, which are sonicated to obtain MWCNTs-HBP(P-L). Moreover, MWCNTs-HBP(P-L) is incorporated with PVA polymer to fabricate PVA fluorescence fibers via wet spinning. The fluorescence and mechanical properties of fabricated PVA fluorescence fibers are characterized by SEM, FTIR, XRD, DSC, fibers tensile tester and fluorescence spectroscopy. The results display that the neat PVA fibers could not emit fluorescence when emission peak is at 450–480 nm, while MWCNTs-HBP(P-L)/PVA fibers could emit green fluorescence. The neat PVA fibers still could not emit fluorescence when emission peak is at 530–550 nm, while MWCNTs-HBP(P-L)/PVA fibers could emit dark red fluorescence. Furthermore, the crystallinity, the degree of orientation, the breaking strength and modulus of MWCNTs-HBP(P-L)/PVA fibers are 65.0%, 93.8%, 6.52 cN/dtex and 76.33 cN/dtex, respectively. Especially, the breaking strength and modulus of MWCNTs-HBP(P-L)/PVA fibers are 15.2% and 82.1% higher than that of neat PVA fibers. The fabricated MWCNTs-HBP(P-L)/PVA fibers exhibit unique mechanical and fluorescence properties, which make it be potentially envisaged in biomedical application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Scheme. 2
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Acik G (2019) Soybean oil modified bio-based poly(vinyl alcohol)s via ring-opening polymerization. J Polym Environ 27:2618–2623. https://doi.org/10.1007/s10924-019-01547-3

    Article  CAS  Google Scholar 

  2. Deng M, Dong Z, Zhang C (2020) Experimental investigation on tensile behavior of carbon textile reinforced mortar (TRM) added with short polyvinyl alcohol (PVA) fibers. Constr Build Mater 235:117801

    Article  CAS  Google Scholar 

  3. Kucko NW, Petre DG, de Ruiter M et al (2020) Micro- and macromechanical characterization of the influence of surface-modification of poly(vinyl alcohol) fibers on the reinforcement of calcium phosphate cements. J Mech Behav Biomed Mater 109:103776. https://doi.org/10.1016/j.jmbbm.2020.103776

    Article  CAS  PubMed  Google Scholar 

  4. Zhang R, Jin L, Tian Y et al (2019) Static and dynamic mechanical properties of eco-friendly polyvinyl alcohol fiber-reinforced ultra-high-strength concrete. Struct Concr 20(3):1051–1063

    Article  Google Scholar 

  5. Dong Z, Deng M, Zhang C et al (2020) Tensile behavior of glass textile reinforced mortar (TRM) added with short PVA fibers. Constr Build Mater 260:119897. https://doi.org/10.1016/j.conbuildmat.2020.119897

    Article  CAS  Google Scholar 

  6. Ma C, Li L, Chen Q et al (2020) Application of internal persistent fluorescent fibers in tracking microplastics in vivo processes in aquatic organisms. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.123336

    Article  PubMed  Google Scholar 

  7. He Y, Du E, Zhou X et al (2020) Wet-spinning of fluorescent fibers based on gold nanoclusters-loaded alginate for sensing of heavy metal ions and anti-counterfeiting. Spectrochim Acta Part A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2020.118031

    Article  Google Scholar 

  8. Parola I, Zaremba D, Evert R et al (2018) High performance fluorescent fiber solar concentrators employing double-doped polymer optical fibers. Sol Energy Mater Sol Cells 178:20–28. https://doi.org/10.1016/j.solmat.2018.01.013

    Article  CAS  Google Scholar 

  9. Liu F, Cui M, Ma J et al (2017) An optical fiber taper fluorescent probe for detection of nitro-explosives based on tetraphenylethylene with aggregation-induced emission. Opt Fiber Technol 36:98–104. https://doi.org/10.1016/j.yofte.2017.03.004

    Article  CAS  Google Scholar 

  10. Mikołajczyk T, Rabiej S, Bogun’ M, Szparaga G, Draczyn’ski Z (2010) Nanocomposite polyvinyl alcohol fibers for medical applications. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  Google Scholar 

  11. Wang J, Liu Z, Shao X et al (2020) A novel preparation method and characterization of fluorescent cellulose fibers. Cellulose 27:3651–3659. https://doi.org/10.1007/s10570-020-03062-4

    Article  CAS  Google Scholar 

  12. Cheng Q, Cao Z, Hao A et al (2020) Fluorescent imprintable hydrogels via organic/inorganic supramolecular coassembly. ACS Appl Mater Interf 12:15491–15499. https://doi.org/10.1021/acsami.0c04418

    Article  CAS  Google Scholar 

  13. Shibasaki Y, Sasahara R, Hoshino Y et al (2020) Reactivity-controlled synthesis of A2 + B3 type soluble hyperbranched polymers from aromatic diamines and cyanuryl chloride via a coupled monomer method. Mater Today Commun 24:101043. https://doi.org/10.1016/j.mtcomm.2020.101043

    Article  CAS  Google Scholar 

  14. Hao T, Zhou Z, Yan D (2019) Kinetic theory of A2+B3+B2 type hyperbranched polymerization. Polymer (Guildf) 185:121985. https://doi.org/10.1016/j.polymer.2019.121985

    Article  CAS  Google Scholar 

  15. Blackburn C, Tai H, Salerno M et al (2020) Data presenting the synthesis of three novel stimuli responsive hyperbranched polymers synthesised via RAFT polymerisation and the bio conjugation of folic acid. Data Br 28:104861. https://doi.org/10.1016/j.dib.2019.104861

    Article  Google Scholar 

  16. Chhanda SA, Itsuno S (2020) Design and synthesis of cinchona-based chiral hyperbranched polymers and their application in asymmetric reactions. Tetrahedron 76:131247. https://doi.org/10.1016/j.tet.2020.131247

    Article  CAS  Google Scholar 

  17. Cheng KC (2020) Model of hyperbranched polymers prepared via polymerization of AB2 and core C3 monomers in a continuous-stirred tank reactor. Chem Eng Res Des 155:40–47. https://doi.org/10.1016/j.cherd.2019.12.026

    Article  CAS  Google Scholar 

  18. Zhang G, Xiao Y, Yan J, Zhang W (2020) Fabrication of ZnO nanoparticle-coated calcium alginate nonwoven fabric by ion exchange method based on amino hyperbranched polymer. Mater Lett 270:127624. https://doi.org/10.1016/j.matlet.2020.127624

    Article  CAS  Google Scholar 

  19. Wang G, Ma L, Yang X et al (2019) Improving the interfacial and flexural properties of carbon fiber–epoxy composites via the grafting of a hyperbranched aromatic polyamide onto a carbon fiber surface on the basis of solution polymerization. J Appl Polym Sci 136:1–11. https://doi.org/10.1002/app.47232

    Article  CAS  Google Scholar 

  20. Kikionis S, Ioannou E, Andrén OCJ et al (2018) Nanofibrous nonwovens based on dendritic-linear-dendritic poly(ethylene glycol) hybrids. J Appl Polym Sci. https://doi.org/10.1002/app.45949

    Article  Google Scholar 

  21. Daham A, Zegaoui A, Ghouti HA et al (2019) Structural, morphological and mechanical properties of hyperbranched polymers coated carbon fibers reinforced DCBA/BA-a composites. Compos Interf 00:1–15. https://doi.org/10.1080/09276440.2019.1708672

    Article  CAS  Google Scholar 

  22. Liu M, Zhao LB, Yu LY et al (2020) Structure and properties of PSf hollow fiber membranes with different molecular weight hyperbranched polyester using pentaerythritol as core. Polymers (Basel). https://doi.org/10.3390/polym12020383

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Zuo Y, Yang T et al (2019) Polysiloxane-based hyperbranched fluorescent materials prepared by thiol-ene “click” chemistry as potential cellular imaging polymers. Eur Polym J 112:515–523. https://doi.org/10.1016/j.eurpolymj.2019.01.014

    Article  CAS  Google Scholar 

  24. Shimizu K, Métivier R, Kobatake S (2020) Synthesis and fluorescence on/off switching of hyperbranched polymers having diarylethene at the branching point. J Photochem Photobiol A Chem 390:112341. https://doi.org/10.1016/j.jphotochem.2019.112341

    Article  CAS  Google Scholar 

  25. Wu Y, Li X, Zhao H et al (2020) Pyrene-based hyperbranched porous polymers with doped Ir(piq)2(acac) red emitter for highly efficient white polymer light-emitting diodes. Org Electron. https://doi.org/10.1016/j.orgel.2019.105487

    Article  Google Scholar 

  26. Campo LF, Corrêa DS, De Araüjo MA, Stefani V (2000) New fluorescent monomers and polymers displaying an intramolecular proton-transfer mechanism in the electronically excited state (ESIPT), 1: synthesis of benzazolylvinylene derivatives and its copolymerization with methyl methacrylate (MMA). Macromol Rapid Commun 21:832–836. https://doi.org/10.1002/1521-3927(20000801)21:12%3c832::AID-MARC832%3e3.0.CO;2-Y

    Article  CAS  Google Scholar 

  27. Wang H, Qiu T, Song N, Li X (2010) Hyperbranched polymer for light-emitting applications. Polym Int 59:1384–1389. https://doi.org/10.1002/pi.2879

    Article  CAS  Google Scholar 

  28. Lua H, Zou L, Xua Y, Sun H, Li YV (2018) Preparation and study of poly vinyl alcohol/hyperbranched polylysine fluorescence fibers via wet spinning. Mater Res Express. https://doi.org/10.1088/2053-1591/aaaedc

    Article  Google Scholar 

  29. Liu X, Chen P, Chen J et al (2020) A nitrogen-rich hyperbranched polymer as cathode encapsulated material for superior long-cycling lithium-sulfur batteries. Electrochim Acta 330:135337. https://doi.org/10.1016/j.electacta.2019.135337

    Article  CAS  Google Scholar 

  30. Chen S, Xu Z, Zhang D (2018) Synthesis and application of epoxy-ended hyperbranched polymers. Chem Eng J 343:283–302. https://doi.org/10.1016/j.cej.2018.03.014

    Article  CAS  Google Scholar 

  31. Chen Y, Wang L, Yu H et al (2015) Synthesis and application of polyethylene-based functionalized hyperbranched polymers. Prog Polym Sci 45:23–43. https://doi.org/10.1016/j.progpolymsci.2015.01.004

    Article  CAS  Google Scholar 

  32. Medel S, Martínez-Campos E, Acitores D et al (2018) Synthesis and spectroscopic properties of a new fluorescent acridine hyperbranched polymer: applications to acid sensing and as antimicrobial agent. Eur Polym J 102:19–29. https://doi.org/10.1016/j.eurpolymj.2018.03.008

    Article  CAS  Google Scholar 

  33. Chirowodza H, Sanderson RD (2010) Surface modification of poly(vinyl alcohol) fibers. Macromol Mater Eng 295:1009–1016. https://doi.org/10.1002/mame.201000185

    Article  CAS  Google Scholar 

  34. Lu L, Hou W, Sun J et al (2014) Preparation of poly (vinyl alcohol) fibers strengthened using multiwalled carbon nanotubes functionalized with tea polyphenols. J Mater Sci 49:3322–3330

    Article  CAS  Google Scholar 

  35. Li Y, Sun J, Wang J et al (2016) Preparation of well-dispersed reduced graphene oxide and its mechanical reinforcement in polyvinyl alcohol fibre. Polym Int 65:1054–1062. https://doi.org/10.1002/pi.5151

    Article  CAS  Google Scholar 

  36. Li S, Lin Q, Zhu H et al (2016) Improved mechanical properties of epoxy-based composites with hyperbranched polymer grafting glass-fiber. Polym Adv Technol 27:898–904. https://doi.org/10.1002/pat.3746

    Article  CAS  Google Scholar 

  37. Aslam M, Kalyar MA, Raza ZA (2018) Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 58:2119–2132. https://doi.org/10.1002/pen.24855

    Article  CAS  Google Scholar 

  38. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  39. Wei Y, Lai D, Zou L et al (2018) Facile fabrication of PVA composite fibers with high fraction of multiwalled carbon nanotubes by gel spinning. Polym Eng Sci 58:37–45. https://doi.org/10.1002/pen.24528

    Article  CAS  Google Scholar 

  40. Anzar N, Hasan R, Tyagi M et al (2020) Carbon nanotube–a review on synthesis, properties and plethora of applications in the field of biomedical science. Sensors Int 1:100003. https://doi.org/10.1016/j.sintl.2020.100003

    Article  Google Scholar 

  41. Deshmukh MA, Jeon JY, Ha TJ (2020) Carbon nanotubes: an effective platform for biomedical electronics. Biosens Bioelectron 150:111919. https://doi.org/10.1016/j.bios.2019.111919

    Article  CAS  PubMed  Google Scholar 

  42. Zhao X, Ma J, Wang Z et al (2012) Hyperbranched-polymer functionalized multi-walled carbon nanotubes for poly (vinylidene fluoride) membranes: from dispersion to blended fouling-control membrane. Desalination 303:29–38. https://doi.org/10.1016/j.desal.2012.07.009

    Article  CAS  Google Scholar 

  43. Kim GM, Kim YK, Kim YJ et al (2019) Enhancement of the modulus of compression of calcium silicate hydrates via covalent synthesis of CNT and silica fume. Constr Build Mater 198:218–225. https://doi.org/10.1016/j.conbuildmat.2018.11.161

    Article  CAS  Google Scholar 

  44. Demczyk B, Wang Y, Cumings J et al (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334:173–178. https://doi.org/10.1016/S0921-5093(01)01807-X

    Article  Google Scholar 

  45. Arrechea S, Guerrero-Gutiérrez EMA, Velásquez L et al (2020) Effect of multiwall carbon nanotubes (Mwcnt, Mwcnt-Cooh and Mwcnt-Thiazol) in the mechanical compression properties of a cement-based material. SSRN Electron J. https://doi.org/10.2139/ssrn.3548834

    Article  Google Scholar 

  46. Behnia S, Rahimi F (2018) Effect of electric field on the electrical conductivity of defected carbon nanotube: multifractal properties of the wavefunctions. Phys Lett Sect A Gen At Solid State Phys 382:3274–3280. https://doi.org/10.1016/j.physleta.2018.09.018

    Article  CAS  Google Scholar 

  47. Gong B, Ikematsu A, Waki K (2017) Impacts of structure defects and carboxyl and carbonyl functional groups on the work function of multiwalled carbon nanotubes. Carbon N Y 114:526–532. https://doi.org/10.1016/j.carbon.2016.12.046

    Article  CAS  Google Scholar 

  48. Hembram KPSS, Rao GM (2012) Origin of structural defects in multiwall carbon nanotube. Mater Lett 72:68–70. https://doi.org/10.1016/j.matlet.2011.12.078

    Article  CAS  Google Scholar 

  49. Ma Y, Lan G, Fu W et al (2020) Role of surface defects of carbon nanotubes on catalytic performance of barium promoted ruthenium catalyst for ammonia synthesis. J Energy Chem 41:79–86. https://doi.org/10.1016/j.jechem.2019.04.016

    Article  Google Scholar 

  50. Lee D, Kim T, Ajmal CM, Baik S (2018) The effect of crystalline defects and geometry factors of multi-walled carbon nanotubes on electrical conductivity of silver-nitrile butadiene rubber composites. Synth Met 242:23–28. https://doi.org/10.1016/j.synthmet.2018.04.008

    Article  CAS  Google Scholar 

  51. Wang Y, Ji W, Xu Y et al (2021) Dispersion and fluorescence properties of multiwalled carbon nanotubes modified with hyperbranched poly(phenylalanine-lysine). Coll Surf A Physicochem Eng Asp 608:125557. https://doi.org/10.1016/j.colsurfa.2020.125557

    Article  CAS  Google Scholar 

  52. Huang H, Liu M, Jiang R et al (2018) Fabrication and characterization of hyperbranched polyglycerol modified carbon nanotubes through the host-guest interactions. Mater Sci Eng C 91:458–465. https://doi.org/10.1016/j.msec.2018.05.008

    Article  CAS  Google Scholar 

  53. Dube ST, Moutloali RM, Malinga SP (2020) Hyperbranched polyethyleneimine/multi-walled carbon nanotubes polyethersulfone membrane incorporated with Fe-Cu bimetallic nanoparticles for water treatment. J Environ Chem Eng 8:103962. https://doi.org/10.1016/j.jece.2020.103962

    Article  CAS  Google Scholar 

  54. Li S, Yao Y (2019) Synergistic improvement of epoxy composites with multi-walled carbon nanotubes and hyperbranched polymers. Compos Part B Eng 165:293–300. https://doi.org/10.1016/j.compositesb.2018.11.122

    Article  CAS  Google Scholar 

  55. Ling X, Wei Y, Zou L, Xu S (2014) Functionalization and dispersion of multiwalled carbon nanotubes modified with poly-l-lysine. Coll Surf A Physicochem Eng Asp 443:19–26. https://doi.org/10.1016/j.colsurfa.2013.10.053

    Article  CAS  Google Scholar 

  56. Wei Y, Ling X, Zou L et al (2015) A facile approach toward preparation of sulfonated multi-walled carbon nanotubes and their dispersibility in various solvents. Coll Surf A Physicochem Eng Asp 482:507–513. https://doi.org/10.1016/j.colsurfa.2015.07.005

    Article  CAS  Google Scholar 

  57. Yu J, Tian F, Chen S et al (2015) Structure and property development of aromatic copolysulfonamide fibers during wet spinning process. J Appl Polym Sci 132:3–10. https://doi.org/10.1002/app.42343

    Article  CAS  Google Scholar 

  58. Föllmer M, Jestin S, Neri W et al (2019) Wet-spinning and carbonization of lignin-polyvinyl alcohol precursor fibers. Adv Sustain Syst 3:1–11. https://doi.org/10.1002/adsu.201900082

    Article  CAS  Google Scholar 

  59. Aloma KK, Sukaryo S, Fahlawati NI et al (2020) Synthesis of nanofibers from alginate-polyvinyl alcohol using electrospinning methods. Macromol Symp 391:1–6. https://doi.org/10.1002/masy.201900199

    Article  CAS  Google Scholar 

  60. Ding C, Guo L, Chen B (2020) Orientation distribution of polyvinyl alcohol fibers and its influence on bridging capacity and mechanical performances for high ductility cementitious composites. Constr Build Mater 247:118491. https://doi.org/10.1016/j.conbuildmat.2020.118491

    Article  CAS  Google Scholar 

  61. Zhao Y, Wang L, Yu H et al (2015) Study on the preparation of hyperbranched polyethylene fibers and hyperbranched polyethylene composite fibers via electrospinning. J Appl Polym Sci 132:1–11. https://doi.org/10.1002/app.42517

    Article  CAS  Google Scholar 

  62. Lin JH, Lin ZI, Pan YJ et al (2016) Improvement in mechanical properties and electromagnetic interference shielding effectiveness of PVA-based composites: synergistic effect between graphene nano-sheets and multi-walled carbon nanotubes. Macromol Mater Eng 301:199–211. https://doi.org/10.1002/mame.201500314

    Article  CAS  Google Scholar 

  63. Wu S, Zheng G, Guan X et al (2016) Mechanically strengthened polyamide 66 nanofibers bundles via compositing with polyvinyl alcohol. Macromol Mater Eng 301:212–219. https://doi.org/10.1002/mame.201500220

    Article  CAS  Google Scholar 

  64. Li C, Shi G (2014) Carbon nanotube-based fluorescence sensors. J Photochem Photobiol C Photochem Rev 19:20–34. https://doi.org/10.1016/j.jphotochemrev.2013.10.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key Research and Development program of China (2016YFB0303200) and the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2021009).

Author information

Authors and Affiliations

Authors

Contributions

Yanli Wang was involved in conceptualization, formal analysis, investigation, writing—original draft, writing—review & editing. Junwei He helped in formal analysis, investigation, validation, writing—review & editing. Wangchong Ji helped in investigation. Liming Zou contributed to conceptualization, resources, supervision, funding acquisition. Hongwei Lu was involved in conceptualization, software, formal analysis. Yan Vivian Li helped in software.

Corresponding author

Correspondence to Liming Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., He, J., Ji, W. et al. Fluorescence and structural properties of polyvinyl alcohol fibers modified with multiwalled carbon nanotubes-hyperbranched poly (phenylalanine-lysine). Polym. Bull. 79, 7303–7321 (2022). https://doi.org/10.1007/s00289-021-03851-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03851-2

Keywords

Navigation