Skip to main content

Starch-derived superabsorbent polymers in agriculture applications: an overview

Abstract

At present, the growing environmental concerns have strengthened the use of biodegradable and natural polymers in the synthesis of superabsorbent polymer (SAP) particularly in agriculture applications as natural polymers are much more efficient and environmentally friendly than synthetic ones. Starch is the most abundant carbohydrate polymer, biodegradable, and a renewable raw resource, with good chemical stability and high reactivity. Thus, starch-based SAP has gained huge interest in the agriculture field in the past few years. This review presents the significance of SAP in agriculture, starch-derived SAP, crosslinking and graft copolymerization techniques used in the synthesis of starch-based SAP as well as control release formulations and control release study of agrochemicals. The review significantly elaborates the synthesis techniques and various chemistries used for the preparation of SAP as well as the structure–property relationships like the effect of grafting or doping on the swelling kinetics and water absorbency. Furthermore, the various mainstream characterization techniques also reviewed which are generally used for the analysis of SAP.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

2,4 D:

2,4 Dichlorophenoxyacetic acid

2-HEA:

2-Hydroxyethyl Acrylate

APS:

Ammonium persulphate

AUL:

Absorption under load

CaCl2 :

Calcium chloride

CAN:

Ceric ammonium nitrate

CMC:

Carboxymethyl cellulose

CMS/XG:

Carboxymethyl starch/xanthan gum

CNC:

Cellulose nanocrystals

CRF:

Control release fertilizer

DMDAAC:

Diallyl dimethylammonium chloride

EPTC:

Ethyldipropylthio carbamate

EVA-150:

Ethylene vinyl acetate

LOS:

Logarithm of slope

MBA:

Methylene bisacrylamide

MMT:

Montmorillonite

NCNPs:

Natural char nanoparticles

PGS:

Pregelatinized starch

PHR:

Phosphorus rock

PPS:

Potassium persulphate

PVA:

Polyvinyl alcohol

SA:

Starch acetate

SAP:

Superabsorbent polymer

SEM:

Scanning electron microscopy

semi-IPN:

Semi-interpenetrating polymer network

SRF:

Slow release fertilizer

SSS:

Sodium starch sulphate

Tg:

Glass transition temperature

Tm:

Melting temperature

UV:

Ultra-violet

wt%:

Weight

References

  1. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J (English Ed) 17:451–477

    CAS  Google Scholar 

  2. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 24:4337–4351. https://doi.org/10.1016/S0142-9612(03)00340-5

    CAS  Article  PubMed  Google Scholar 

  3. Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 6:105–121. https://doi.org/10.1016/j.jare.2013.07.006

    CAS  Article  PubMed  Google Scholar 

  4. Mignon A (2017) Thesis: Effect of pH-Responsive Superabsorbent Polymers on the Self-Sealing and Self-Healing of Cracks in Concrete

  5. Braihi A (2017) Superabsorbent polymers. Univ Babylon

  6. Jawad AH, Abdulhameed AS (2020) Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: adsorption kinetic, isotherm and mechanism study. Surfaces and Interfaces 18:100422. https://doi.org/10.1016/j.surfin.2019.100422

    CAS  Article  Google Scholar 

  7. Abdulhameed AS, Firdaus Hum NNM, Rangabhashiyam S (2021) Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3activator. J Environ Chem Eng 9:105530. https://doi.org/10.1016/j.jece.2021.105530

    CAS  Article  Google Scholar 

  8. Jawad AH, Abdulhameed AS (2020) Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energy, Ecol Environ 5:456–469. https://doi.org/10.1007/s40974-020-00177-z

    Article  Google Scholar 

  9. Zhang J, Wang L, Wang A (2006) Preparation and swelling behavior of fast-swelling superabsorbent hydrogels based on starch-g-poly(acrylic acid-co-sodium acrylate). Macromol Mater Eng 291:612–620. https://doi.org/10.1002/mame.200500387

    CAS  Article  Google Scholar 

  10. Antonietti M, Caruso RA, Göltner CG, Weissenberger MC (1999) Morphology variation of porous polymer gels by polymerization in Lyotropic surfactant phases. Macromolecules 32:1383–1389. https://doi.org/10.1021/ma9812478

    CAS  Article  Google Scholar 

  11. Zhang XZ, Yang YY, Chung TS, Ma KX (2001) Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels. Langmuir 17:6094–6099. https://doi.org/10.1021/la010105v

    CAS  Article  Google Scholar 

  12. Kaneko Y, Sakai K, Kikuchi A (1995) Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted Poly(N-isopropylacrylamide) Hydrogels. Macromolecules 28:7717–7723. https://doi.org/10.1021/ma00127a018

    CAS  Article  Google Scholar 

  13. Philippova OE, Zaroslov YD, Khokhlov AR, Wegner G (2003) Reinforced superabsorbent Polyacrylamide hydrogels. Macromol Symp 200:45–54. https://doi.org/10.1002/masy.200351005

    CAS  Article  Google Scholar 

  14. Kiatkamjornwong S, Wongwatthanasatien R (2004) Superabsorbent polymer of poly[aciylamide-co-(acrylic acid)] by foamed polymerization. I. Synthesis and water swelling properties. Macromol Symp 207:229–240. https://doi.org/10.1002/masy.200450320

    CAS  Article  Google Scholar 

  15. Wu J, Lin J, Zhou M, Wei C (2000) Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite. Macromol Rapid Commun 21:1032–1034. https://doi.org/10.1002/1521-3927(20001001)21:15%3c1032::AID-MARC1032%3e3.0.CO;2-N

    CAS  Article  Google Scholar 

  16. Lin J, Wu J, Yang Z, Pu M (2001) Synthesis and properties of poly(acrylic acid)/mica superabsorbent nanocomposite. Macromol Rapid Commun 22:422–424. https://doi.org/10.1002/1521-3927(20010301)22:6%3c422::AID-MARC422%3e3.0.CO;2-R

    CAS  Article  Google Scholar 

  17. Huang J, Huang ZM, Bao YZ, Weng ZX (2006) Synthesis and characterization of reinforced acrylic-based superabsorbents crosslinked with divinylbenzene. J Appl Polym Sci 100:1594–1600. https://doi.org/10.1002/app.23604

    CAS  Article  Google Scholar 

  18. Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS (2021) Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydr Polym 251:116986. https://doi.org/10.1016/j.carbpol.2020.116986

    CAS  Article  PubMed  Google Scholar 

  19. Pereira AGB, Fajardo AR, Valente AJM (2016) Chapter 7: Outstanding Features of Starch-based Hydrogel Nanocomposites. RSC Green Chem 2016-Janua:236–262. https://doi.org/10.1039/9781782622796-00236

  20. Ojogbo E, Ogunsona EO, Mekonnen TH (2020) Chemical and physical modifications of starch for renewable polymeric materials. Mater Today Sustain 7–8:100028. https://doi.org/10.1016/j.mtsust.2019.100028

    Article  Google Scholar 

  21. Van Nieuwenhove I, Salamon A, Adam S (2017) Gelatin- and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels. Carbohydr Polym 161:295–305. https://doi.org/10.1016/j.carbpol.2017.01.010

    CAS  Article  PubMed  Google Scholar 

  22. Haroon M, Wang L, Yu H (2016) Chemical modification of starch and its application as an adsorbent material. RSC Adv 6:78264–78285. https://doi.org/10.1039/c6ra16795k

    CAS  Article  Google Scholar 

  23. Dispat N, Poompradub S, Kiatkamjornwong S (2020) Synthesis of ZnO/SiO2-modified starch-graft-polyacrylate superabsorbent polymer for agricultural application. Carbohydr Polym 249:116862. https://doi.org/10.1016/j.carbpol.2020.116862

    CAS  Article  PubMed  Google Scholar 

  24. Abd El-Rehim HA, Hegazy ESA, Abd El-Mohdy HL (2004) Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance. J Appl Polym Sci 93:1360–1371. https://doi.org/10.1002/app.20571

    CAS  Article  Google Scholar 

  25. Bakass M, Mokhlisse A, Lallemant M (2002) Absorption and desorption of liquid water by a superabsorbent polymer: Effect of polymer in the drying of the soil and the quality of certain plants. J Appl Polym Sci 83:234–243. https://doi.org/10.1002/app.2239

    CAS  Article  Google Scholar 

  26. Wu L, Liu M, Liang R (2008) Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour Technol 99:547–554. https://doi.org/10.1016/j.biortech.2006.12.027

    CAS  Article  PubMed  Google Scholar 

  27. Lan Wu ML (2008) Preparation and characterization of cellulose acetate-coated compound fertilizer with controlled-release and water-retention. Polym Adv Technol 19:785–792. https://doi.org/10.1002/pat.1034

    CAS  Article  Google Scholar 

  28. Liu M, Liang R, Falu Zhan ZL (2007) Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization. Polym Int 56:729–737. https://doi.org/10.1002/pi.2196

    CAS  Article  Google Scholar 

  29. Tleuova AB, Wielogorska E, Talluri VSSLP (2020) Recent advances and remaining barriers to producing novel formulations of fungicides for safe and sustainable agriculture. J Control Release 326:468–481. https://doi.org/10.1016/j.jconrel.2020.07.035

    CAS  Article  PubMed  Google Scholar 

  30. Zhu Z, Zhuo R (2000) Crosslinked quaternary ammonium cornstarch matrix for slow release of carboxylic groups-containing herbicides. Starch/Staerke 52:58–63. https://doi.org/10.1002/(sici)1521-379x(200004)52:2/3%3c58::aid-star58%3e3.0.co;2-3

    CAS  Article  Google Scholar 

  31. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50:1475–1486. https://doi.org/10.1080/03602559.2011.593082

    CAS  Article  Google Scholar 

  32. Rodrigues FHA, Spagnol C, Pereira AGB (2014) Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin. J Appl Polym Sci 131:1–13. https://doi.org/10.1002/app.39725

    CAS  Article  Google Scholar 

  33. Omidian H, Rocca JG, Park K (2005) Advances in superporous hydrogels. J Control Release 102:3–12. https://doi.org/10.1016/j.jconrel.2004.09.028

    CAS  Article  PubMed  Google Scholar 

  34. Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1:13379–13398. https://doi.org/10.1039/c3ta12555f

    CAS  Article  Google Scholar 

  35. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    CAS  Article  Google Scholar 

  36. Klemm D, Heinze T, Liebert T (2006) Functional polymers based on Dextran BT—Polysaccharides II Polysaccharides II 205:199–291

    Article  Google Scholar 

  37. Jawad AH, Abdulhameed AS, Malek NNA, ALOthman ZA (2020) Statistical optimization and modeling for color removal and COD reduction of reactive blue 19 dye by mesoporous chitosan-epichlorohydrin/kaolin clay composite. Int J Biol Macromol 164:4218–4230. https://doi.org/10.1016/j.ijbiomac.2020.08.201

    CAS  Article  PubMed  Google Scholar 

  38. Jawad AH, Abdulhameed AS (2020) Facile synthesis of crosslinked chitosan-tripolyphosphate/kaolin clay composite for decolourization and COD reduction of remazol brilliant blue R dye: Optimization by using response surface methodology. Colloids Surfaces A Physicochem Eng Asp 605:125329. https://doi.org/10.1016/j.colsurfa.2020.125329

    CAS  Article  Google Scholar 

  39. Jawad AH, Abdulhameed AS, Reghioua A, Yaseen ZM (2020) Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes. Int J Biol Macromol 163:756–765. https://doi.org/10.1016/j.ijbiomac.2020.07.014

    CAS  Article  PubMed  Google Scholar 

  40. Malek NNA, Jawad AH, Abdulhameed AS (2020) New magnetic Schiff’s base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: An optimized process. Int J Biol Macromol 146:530–539. https://doi.org/10.1016/j.ijbiomac.2020.01.020

    CAS  Article  PubMed  Google Scholar 

  41. Pooresmaeil M, Namazi H (2020) Chapter 14: Application of polysaccharide-based hydrogels for water treatments. Elsevier Inc.

  42. Tester RF, Karkalas J, Qi X (2004) Starch—Composition, fine structure and architecture. J Cereal Sci 39:151–165. https://doi.org/10.1016/j.jcs.2003.12.001

    CAS  Article  Google Scholar 

  43. Ellis RP, Cochrane MP, Dale MFB (1998) Starch production and industrial use. J Sci Food Agric 77:289–311. https://doi.org/10.1002/(SICI)1097-0010(199807)77:3%3c289::AID-JSFA38%3e3.0.CO;2-D

    CAS  Article  Google Scholar 

  44. Singh N, Singh J, Kaur L, Navdeep Singh Sodhi BSG (2003) Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem 81:219–231

    CAS  Article  Google Scholar 

  45. Fekete T, Borsa J, Takács E, Wojnárovits L (2017) Synthesis of carboxymethylcellulose/starch superabsorbent hydrogels by gamma-irradiation. Chem Cent J 11:1–10. https://doi.org/10.1186/s13065-017-0273-5

    CAS  Article  Google Scholar 

  46. Giammona G, Pitarresi G, Cavallaro G, Spadaro G (1999) New biodegradable hydrogels based on an acryloylated polyaspartamide cross-linked by gamma irradiation. J Biomater Sci Polym Ed 10:969–987. https://doi.org/10.1163/156856299X00568

    CAS  Article  PubMed  Google Scholar 

  47. Teli MD, Mallick A (2018) Application of sorghum starch for preparing superabsorbent. J Polym Environ 26:1581–1591. https://doi.org/10.1007/s10924-017-1057-7

    CAS  Article  Google Scholar 

  48. Zain G, Nada AA, El-Sheikh MA (2018) Superabsorbent hydrogel based on sulfonated-starch for improving water and saline absorbency. Int J Biol Macromol 115:61–68. https://doi.org/10.1016/j.ijbiomac.2018.04.032

    CAS  Article  PubMed  Google Scholar 

  49. Doo-Won L, Whang HS, Yoon KJ, Sohk-Won K (2001) Synthesis and absorbency of a superabsorbent from sodium starch sulfate-g-polyacrylonitrile. J Appl Polym Sci 79:1423–1430. https://doi.org/10.1002/1097-4628(20010222)79:8%3c1423::AID-APP90%3e3.0.CO;2-V

    Article  Google Scholar 

  50. Mirzakhanian Z, Faghihi K, Barati A, Momeni HR (2015) Synthesis and characterization of fast-swelling porous superabsorbent hydrogel based on starch as a hemostatic agent. J Biomater Sci Polym Ed 26:1439–1451. https://doi.org/10.1080/09205063.2015.1100496

    CAS  Article  PubMed  Google Scholar 

  51. Olad A, Doustdar F, Gharekhani H (2020) Fabrication and characterization of a starch-based superabsorbent hydrogel composite reinforced with cellulose nanocrystals from potato peel waste. Colloids Surfaces A Physicochem Eng Asp 601:124962. https://doi.org/10.1016/j.colsurfa.2020.124962

    CAS  Article  Google Scholar 

  52. Wu J, Wei Y, Lin J, Lin S (2003) Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer (Guildf) 44:6513–6520. https://doi.org/10.1016/S0032-3861(03)00728-6

    CAS  Article  Google Scholar 

  53. Wu J, Wei Y, Lin J, Lin S (2003) Preparation of a starch-graft-acrylamide/kaolinite superabsorbent composite and the influence of the hydrophilic group on its water absorbency. Polym Int 52:1909–1912. https://doi.org/10.1002/pi.1303

    CAS  Article  Google Scholar 

  54. Li A, Liu R, Wang A (2005) Preparation of starch-graft-poly(acrylamide)/attapulgite superabsorbent composite. J Appl Polym Sci 98:1351–1357. https://doi.org/10.1002/app.22302

    CAS  Article  Google Scholar 

  55. Shuibo Hua and Aiqin Wang (2008) Preparation and properties of superabsorbent containing starch and sodium humate. Polym Adv Technol 1009–1014. https://doi.org/10.1002/pat.1068

  56. Zhang Y, Zhao L, Chen Y (2016) Swelling properties and environmental responsiveness of superabsorbent composite based on starch-G-Poly Acrylic Acid/Organo-Zeolite. J Macromol Sci Part B Phys 55:662–679. https://doi.org/10.1080/00222348.2016.1187051

    CAS  Article  Google Scholar 

  57. Al E, Guclu G, Iyim TB, Serkan Emik SO (2008) Synthesis and Properties of Starch-Graft-Acrylic Acid/Na-Montmorillonite Superabsorbent Nanocomposite Hydrogels. J Appl Polym Sci 109:16–22. https://doi.org/10.1002/app

    CAS  Article  Google Scholar 

  58. Salimi M, Motamedi E, Motesharezedeh B (2020) Starch-g-poly(acrylic acid-co-acrylamide) composites reinforced with natural char nanoparticles toward environmentally benign slow-release urea fertilizers. J Environ Chem Eng 8:103765. https://doi.org/10.1016/j.jece.2020.103765

    CAS  Article  Google Scholar 

  59. Ismail H, Irani M, Ahmad Z (2013) Utilization of Waste Polystyrene and Starch for Superabsorbent Composite Preparation. 4195–4202. https://doi.org/10.1002/app.37952

  60. Mohammed AD, Young DA, Vosloo HCM (2014) Synthesis and study of superabsorbent properties of acryloylated starch ester grafted with acrylic acid. 393–399. https://doi.org/10.1002/star.201300174

  61. Pourjavadi A, Samadi M, Ghasemzadeh H (2008) Fast-swelling superabsorbent hydrogels from poly(2-hydroxy ethyl acrylate-co-sodium acrylate) grafted on starch. Starch/Staerke 60:79–86. https://doi.org/10.1002/star.200700666

    CAS  Article  Google Scholar 

  62. Jyothi AN, Sajeev MS, Parvathy PC (2011) Optimization of synthesis and characterization of Cassava Starch-graft-Poly(acrylonitrile) using response surface methodology. J Appl Polym Sci 122:1546–1555. https://doi.org/10.1002/app.34271

    CAS  Article  Google Scholar 

  63. Parvathy PC, Jyothi AN (2012) Synthesis, characterization and swelling behaviour of superabsorbent polymers from cassava starch-graft-poly(acrylamide). Starch/Staerke 64:207–218. https://doi.org/10.1002/star.201100077

    CAS  Article  Google Scholar 

  64. Jyothi AN, Pillai SS, Aravind M (2018) Cassava starch-graft-poly(acrylonitrile)-coated urea fertilizer with sustained release and water retention properties. Adv Polym Technol 37:2687–2694. https://doi.org/10.1002/adv.21943

    CAS  Article  Google Scholar 

  65. Bai C, Zhang S, Huang L (2015) Starch-based hydrogel loading with carbendazim for controlled-release and water absorption. Carbohydr Polym 125:376–383. https://doi.org/10.1016/j.carbpol.2015.03.004

    CAS  Article  PubMed  Google Scholar 

  66. Zhao C, Zhang M, Liu Z (2019) Salt-tolerant superabsorbent polymer with high capacity of water-nutrient retention derived from Sulfamic Acid-Modified Starch. ACS Omega 4:5923–5930. https://doi.org/10.1021/acsomega.9b00486

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Liu TG, Wang YT, Guo J (2017) One-step synthesis of corn starch urea based acrylate superabsorbents. Appl Polymer 45175:1–10. https://doi.org/10.1002/app.45175

    CAS  Article  Google Scholar 

  68. Teli MD, Waghmare NG (2010) Synthesis of superabsorbents from Amaranthus starch. Carbohydr Polym 81:695–699. https://doi.org/10.1016/j.carbpol.2010.03.037

    CAS  Article  Google Scholar 

  69. Peng G, Xu S, Peng Y (2008) A new amphoteric superabsorbent hydrogel based on sodium starch sulfate. Bioresour Technol 99:444–447. https://doi.org/10.1016/j.biortech.2007.01.018

    CAS  Article  PubMed  Google Scholar 

  70. Anastasiades A, Thanou S, Loulis D (2002) Rheological and physical characterization of pregelatinized maize starches. J Food Eng 52:57–66. https://doi.org/10.1016/S0260-8774(01)00086-3

    Article  Google Scholar 

  71. Lefnaoui S, Moulai-Mostefa N (2015) Synthesis and evaluation of the structural and physicochemical properties of carboxymethyl pregelatinized starch as a pharmaceutical excipient. Saudi Pharm J 23:698–711. https://doi.org/10.1016/j.jsps.2015.01.021

    Article  PubMed  PubMed Central  Google Scholar 

  72. Edgar KJ, Marks JA (2020) Green hydrogels based on starch: Preparation methods for biomedical applications. ACS Symp Ser 1372:173–196. https://doi.org/10.1021/bk-2020-1372.ch010

    CAS  Article  Google Scholar 

  73. Ji N, Qin Y, Li M (2018) Fabrication and characterization of starch nanohydrogels via reverse emulsification and internal gelation. J Agric Food Chem 66. https://doi.org/10.1021/acs.jafc.8b02601

  74. Slaughter BV, Khurshid SS, Fisher OZ (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329. https://doi.org/10.1002/adma.200802106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Xiao X, Yu L, Xie F (2017) One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer. Chem Eng J 309:607–616. https://doi.org/10.1016/j.cej.2016.10.101

    CAS  Article  Google Scholar 

  76. Qiao D, Yu L, Bao X (2017) Understanding the microstructure and absorption rate of starch-based superabsorbent polymers prepared under high starch concentration. Carbohydr Polym 175:141–148. https://doi.org/10.1016/j.carbpol.2017.07.071

    CAS  Article  PubMed  Google Scholar 

  77. Lü S, Gao C, Wang X (2014) Synthesis of a starch derivative and its application in fertilizer for slow nutrient release and water-holding. RSC Adv 4:51208–51214. https://doi.org/10.1039/c4ra06006g

    CAS  Article  Google Scholar 

  78. Singh B, Sharma DK, Kumar R, Gupta A (2009) Applied Clay Science Controlled release of the fungicide thiram from starch–alginate–clay based formulation. Appl Clay Sci 45:76–82. https://doi.org/10.1016/j.clay.2009.03.001

    CAS  Article  Google Scholar 

  79. Memic A, Colombani T, Eggermont LJ (2019) Latest advances in Cryogel technology for biomedical applications. Adv Ther 2:1800114. https://doi.org/10.1002/adtp.201800114

    Article  Google Scholar 

  80. Xu H, Canisag H, Mu B, Yang Y (2015) Robust and flexible films from 100% starch cross-linked by biobased disaccharide derivative. ACS Sustain Chem Eng 3:2631–2639. https://doi.org/10.1021/acssuschemeng.5b00353

    CAS  Article  Google Scholar 

  81. Chhabra R, Peshattiwar V, Pant T (2020) In vivo studies of 3D starch-gelatin scaffolds for full-thickness wound healing. ACS Appl Bio Mater 3:2920–2929. https://doi.org/10.1021/acsabm.9b01139

    CAS  Article  PubMed  Google Scholar 

  82. Liu P, Xu H, Mi X (2015) Oxidized sucrose: A potent and biocompatible crosslinker for three-dimensional fibrous protein scaffolds. Macromol Mater Eng 300:414–422. https://doi.org/10.1002/mame.201400373

    CAS  Article  Google Scholar 

  83. Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118:702–711. https://doi.org/10.1016/j.foodchem.2009.05.050

    CAS  Article  Google Scholar 

  84. Nordin NA, Rahman NA, Talip N, Yacob N (2018) Citric acid cross-linking of Carboxymethyl Sago starch based hydrogel for controlled release application. Macromol Symp 382:1–8. https://doi.org/10.1002/masy.201800086

    CAS  Article  Google Scholar 

  85. Ghosh Dastidar T, Netravali AN (2012) “Green” crosslinking of native starches with malonic acid and their properties. Carbohydr Polym 90:1620–1628. https://doi.org/10.1016/j.carbpol.2012.07.041

    CAS  Article  PubMed  Google Scholar 

  86. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99. https://doi.org/10.1016/j.addr.2009.07.019

    CAS  Article  PubMed  Google Scholar 

  87. Zhao Y, Sun Z (2018) Effects of gelatin-polyphenol and gelatin–genipin cross-linking on the structure of gelatin hydrogels. Int J Food Prop 20:S2822–S2832. https://doi.org/10.1080/10942912.2017.1381111

    CAS  Article  Google Scholar 

  88. Bonitsky CM, McGann ME, Selep MJ (2017) Genipin crosslinking decreases the mechanical wear and biochemical degradation of impacted cartilage in vitro. J Orthop Res 35:558–565. https://doi.org/10.1002/jor.23411

    CAS  Article  PubMed  Google Scholar 

  89. Kong X (2018) Gamma Irradiation of Starch. In: Sui Z, Kong X (eds) Physical Modifications of Starch. Springer Singapore, Singapore, pp 63–96

  90. El-mohdy HL, Hegazy ES, El-rehim HAA (2006) Characterization of starch/acrylic acid super-absorbent hydrogels prepared by ionizing radiation. J Macromol Sci Part A Pure Appl Chem 43:1051–1063. https://doi.org/10.1080/10601320600740249

    CAS  Article  Google Scholar 

  91. Salmawi KME, El-Naggar AA, Ibrahim SM (2018) Gamma irradiation synthesis of carboxymethyl cellulose/acrylic acid/alay superabsorbent hydrogel. Adv Polym Technol 37:515–521. https://doi.org/10.1002/adv.21690

    CAS  Article  Google Scholar 

  92. Tong Z, Peng W, Zhiqian Z, Baoxiu Z (2004). Microwave irradiation copolymerization of superabsorbents from cornstarch and sodium acrylate. Appl Polymer. https://doi.org/10.1002/app.21265

  93. Zhang S, Wang W, Wang H (2014) Synthesis and characterisation of starch grafted superabsorbent via 10 MeV electron-beam irradiation. Carbohydr Polym 101:798–803. https://doi.org/10.1016/j.carbpol.2013.10.009

    CAS  Article  PubMed  Google Scholar 

  94. Bhuniya SP, Rahman MS, Satyanand AJ (2003) Novel route to synthesis of allyl starch and biodegradable hydrogel by copolymerizing allyl-modified starch with methacrylic acid and acrylamide. J Polym Sci Part A Polym Chem 41:1650–1658. https://doi.org/10.1002/pola.10711

    CAS  Article  Google Scholar 

  95. Roy A, Singh SK, Bajpai J, Bajpai AK (2014) Controlled pesticide release from biodegradable polymers. Cent Eur J Chem 12:453–469. https://doi.org/10.2478/s11532-013-0405-2

    CAS  Article  Google Scholar 

  96. Ekebafe L, Ogbeifun D, Okieimen F (2011) Polymer applications in agriculture. Biokemistri 23:81–89

    Google Scholar 

  97. Nickell LG (1994) Chapter 1: Plant Growth Regulators in Agriculture and Horticulture. ACS Symp Ser 1–14

  98. Guilherme MR, Aouada FA, Fajardo AR (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur Polym J.

  99. Grillo R, dos Santos NZP, Maruyama CR (2012) Poly(e{open}-caprolactone)nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231–232:1–9. https://doi.org/10.1016/j.jhazmat.2012.06.019

    CAS  Article  PubMed  Google Scholar 

  100. Pereira AES, Grillo R, Mello NFS (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215. https://doi.org/10.1016/j.jhazmat.2014.01.025

    CAS  Article  PubMed  Google Scholar 

  101. Kenawy ER, Sherrington DC, Akelah A (1992) Controlled release of agrochemical molecules chemically bound to polymers. Eur Polym J 28:841–862

    CAS  Article  Google Scholar 

  102. Schreiber MM, White MD, Wing RE (1988) Bioactivity of controlled release formulations of starch-encapsulated EPTC. J Control Release 7:237–242. https://doi.org/10.1016/0168-3659(88)90056-9

    CAS  Article  Google Scholar 

  103. Wing RE, Otey FH (1983) Determination of Reaction Variables for the Starch Xanthide Encapsulation of Pesticides. J Polym Sci A 1(21):121–140. https://doi.org/10.1002/pol.1983.170210113

    Article  Google Scholar 

  104. Trimnell D, Shasha B (1988) Autoencapsulation: A new method for entrapping pesticides within starch. J Control Release 7:25–31

    CAS  Article  Google Scholar 

  105. Trimnell D, Shasha SB (1988) Entrapment of herbicides in starch for spray applications. J Control Release 7:263–268

    CAS  Article  Google Scholar 

  106. Shasha BS, Trimnell D (1989) Urea pellets coated with starch that contains entrapped herbicides. J Control Release 9:255–257. https://doi.org/10.1016/0168-3659(89)90094-1

    CAS  Article  Google Scholar 

  107. Akelah A (1984) Biological applications of functionalised polymers - A review. J Chem Technol Biotechnol 34 A:263–286. https://doi.org/10.1002/jctb.5040340602

  108. Singh B, Sharma DK, Gupta A (2008) In vitro release dynamics of thiram fungicide from starch and poly ( methacrylic acid ) -based hydrogels. 154:278–286. https://doi.org/10.1016/j.jhazmat.2007.10.024

  109. Singh B, Sharma DK, Gupta A (2007) Controlled release of thiram fungicide from starch-based hydrogels. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes 42:677–695. https://doi.org/10.1080/03601230701465825

    CAS  Article  Google Scholar 

  110. Perez JJ, Francois NJ (2016) Chitosan-starch beads prepared by ionotropic gelation as potential matrices for controlled release of fertilizers. Carbohydr Polym 148:134–142. https://doi.org/10.1016/j.carbpol.2016.04.054

    CAS  Article  PubMed  Google Scholar 

  111. Akelah A (2013) Functionalized polymeric materials in agriculture and the food industry

  112. Mehltretter CL, Roth WB, Weakley FB (1974) Potential Controlled-Release Herbicides from 2,4-D Esters of Starches. Weed Sci 22:415–418. https://doi.org/10.1017/s0043174500037917

    CAS  Article  Google Scholar 

  113. Huey CE, Yahya WZN, Mansor N (2019) Allicin incorporation as urease inhibitor in a chitosan/starch based biopolymer for fertilizer application. Mater Today Proc 16:2187–2196. https://doi.org/10.1016/j.matpr.2019.06.109

    CAS  Article  Google Scholar 

  114. Zhong K, Lin Z, Zheng X (2013) Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydr Polym 92:1367–1376. https://doi.org/10.1016/j.carbpol.2012.10.030

    CAS  Article  PubMed  Google Scholar 

  115. Roy A, Bajpai J, Bajpai AK (2009) Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydr Polym 76:222–231. https://doi.org/10.1016/j.carbpol.2008.10.013

    CAS  Article  Google Scholar 

  116. Singh B, Sharma DK, Gupta A (2009) A study towards release dynamics of thiram fungicide from starch-alginate beads to control environmental and health hazards. J Hazard Mater 161:208–216. https://doi.org/10.1016/j.jhazmat.2008.03.074

    CAS  Article  PubMed  Google Scholar 

  117. Tai L, Zhu X (2008) The blend modification of EVA-150/ starch and controlled-release of imazethapyr. J Coal Sci Eng 14:675–677. https://doi.org/10.1007/s12404-008-0440-3

    Article  Google Scholar 

  118. Zhang K, Feng W, Jin C (2020) Protocol efficiently measuring the swelling rate of hydrogels. MethodsX 7:100779. https://doi.org/10.1016/j.mex.2019.100779

    Article  PubMed  Google Scholar 

  119. Witono JR, Noordergraaf IW, Heeres HJ, Janssen LPBM (2014) Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid. Carbohydr Polym 103:325–332. https://doi.org/10.1016/j.carbpol.2013.12.056

    CAS  Article  PubMed  Google Scholar 

  120. Perez JJ, Francois NJ, Maroniche GA (2018) A novel, green, low-cost chitosan-starch hydrogel as potential delivery system for plant growth-promoting bacteria. Carbohydr Polym 202:409–417. https://doi.org/10.1016/j.carbpol.2018.07.084

    CAS  Article  PubMed  Google Scholar 

  121. Ghobashy MM, Abd El-Wahab H, Ismail MA (2020) Characterization of Starch-based three components of gamma-ray cross-linked hydrogels to be used as a soil conditioner. Mater Sci Eng B Solid-State Mater Adv Technol 260:114645. https://doi.org/10.1016/j.mseb.2020.114645

    CAS  Article  Google Scholar 

  122. Olad A, Doustdar F, Gharekhani H (2018) Starch-based semi-IPN hydrogel nanocomposite integrated with clinoptilolite: Preparation and swelling kinetic study. Carbohydr Polym 200:516–528. https://doi.org/10.1016/j.carbpol.2018.08.014

    CAS  Article  PubMed  Google Scholar 

  123. Qiao D, Liu H, Yu L (2016) Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr Polym 147:146–154. https://doi.org/10.1016/j.carbpol.2016.04.010

    CAS  Article  PubMed  Google Scholar 

  124. Jamingan Z, Ahmad MB, Hashim K, Zainuddin N (2015) Sago starch based hydrogel prepared using electron beam irradiation technique for controlled release application. Malaysian J Anal Sci 19:503–512

    Google Scholar 

  125. Mahmoud GA, Abdel-Aal SE, Badway NA (2014) Radiation synthesis and characterization of starch-based hydrogels for removal of acid dye. Starch/Staerke 66:400–408. https://doi.org/10.1002/star.201300117

    CAS  Article  Google Scholar 

  126. Agarwal N, Nair MS, Mazumder A, Poluri KM (2018) Characterization of nanomaterials using nuclear magnetic resonance spectroscopy. Charact Nanomater Adv Key Technol 17:61–102. https://doi.org/10.1016/B978-0-08-101973-3.00003-1

    Article  Google Scholar 

  127. Abd El-Mohdy HL, Hegazy EA, El-Nesr EM, El-Wahab MA (2016) Synthesis, characterization and properties of radiation-induced Starch/(EG-co-MAA) hydrogels. Arab J Chem 9:S1627–S1635. https://doi.org/10.1016/j.arabjc.2012.04.022

    CAS  Article  Google Scholar 

  128. Zhang Y, Rempel C, Liu Q (2014) Thermoplastic Starch Processing and Characteristics-A Review. Crit Rev Food Sci Nutr 54:1353–1370. https://doi.org/10.1080/10408398.2011.636156

    CAS  Article  PubMed  Google Scholar 

  129. Rolland-Sabaté A, Sánchez T, Buléon A (2012) Structural characterization of novel cassava starches with low and high-amylose contents in comparison with other commercial sources. Food Hydrocoll 27:161–174. https://doi.org/10.1016/j.foodhyd.2011.07.008

    CAS  Article  Google Scholar 

  130. Muller J, González-Martínez C, Chiralt A (2017) Combination Of Poly(lactic) acid and starch for biodegradable food packaging. Materials (Basel) 10:1–22. https://doi.org/10.3390/ma10080952

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karishma Supare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Supare, K., Mahanwar, P.A. Starch-derived superabsorbent polymers in agriculture applications: an overview. Polym. Bull. (2021). https://doi.org/10.1007/s00289-021-03842-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-021-03842-3

Keywords

  • Starch
  • Superabsorbent polymer
  • Agriculture
  • Synthesis
  • Crosslinking