Skip to main content
Log in

Influence of gamma irradiation-induced surface oxidation on tribological property of polyetheretherketone (PEEK)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this paper, the semicrystalline PEEK was irradiated in the atmosphere by gamma rays with a dose up to 20 MGy. The influence of the surface degradation and the internal structural changes on the tribological behavior of PEEK was investigated. X-ray photoelectron spectroscopy analysis shows an increase in the percentage of C=O and O–C=O functional groups on the surface of irradiated PEEK samples. It reveals that irradiation-induced oxidation is the primary form of degradation on the PEEK surface. Scanning electron microscopy results indicate that the surface morphology defects such as micropores and microcracks appear when the irradiation dose exceeds 10 MGy. The friction experiments show that the static friction coefficient of the irradiated PEEK surface increases due to the existence of the surface oxide layer, and the appearance of a shorter run-in period attributes to the formation of uniform and stable transfer film in the initial stage of friction. In addition, when the dose is more than 1 MGy, the steady-state dynamic friction coefficient of the irradiated PEEK surface gradually decreases. The surface oxidation products play a rolling effect of three bodies, resulting in the fall of the dynamic friction coefficient. However, the corresponding wear rate increases by one order of magnitude compared to that of the unirradiated sample. The surface microdefects proliferation and the abrasive wear caused by oxidized clusters during the friction process lead to wear deterioration of the irradiated PEEK at high doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Panayotov IV, Orti V, Cuisinier F, Yachouh J (2016) Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med 27:118–128. https://doi.org/10.1007/s10856-016-5731-4

    Article  CAS  PubMed  Google Scholar 

  2. Fu H, Liao B, Qi F et al (2008) The application of PEEK in stainless steel fiber and carbon fiber reinforced composites. Compos Part B Eng 39:585–591. https://doi.org/10.1016/j.compositesb.2007.09.003

    Article  CAS  Google Scholar 

  3. Zhang G, Li WY, Cherigui M et al (2007) Structures and tribological performances of PEEK (poly-ether-ether-ketone)-based coatings designed for tribological application. Prog Org Coat 60:39–44. https://doi.org/10.1016/j.porgcoat.2007.06.004

    Article  CAS  Google Scholar 

  4. Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28:4845–4869. https://doi.org/10.1016/j.biomaterials.2007.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kurtz SM (2012) Chemical and radiation stability of PEEK. PEEK Biomater Handbook. https://doi.org/10.1016/B978-1-4377-4463-7.10006-5

    Article  Google Scholar 

  6. Vaughan AS, Stevens GC (1995) On crystallization, morphology and radiation effects in poly(ether ether ketone). Polymer (Guildf) 36:1531–1540. https://doi.org/10.1016/0032-3861(95)98996-Z

    Article  CAS  Google Scholar 

  7. Dandy LO, Oliveux G, Wood J et al (2015) Accelerated degradation of polyetheretherketone (PEEK) composite materials for recycling applications. Polym Degrad Stab 112:52–62. https://doi.org/10.1016/j.polymdegradstab.2014.12.012

    Article  CAS  Google Scholar 

  8. Hernández T, Hodgson ER (2007) Water hydraulic polymer components under irradiation. Mech Prop Fusion Eng Des 82:2035–2039. https://doi.org/10.1016/j.fusengdes.2007.04.038

    Article  CAS  Google Scholar 

  9. Ajeesh G, Bhowmik S, Sivakumar V et al (2015) Investigation on polyetheretherketone composite for long term storage of nuclear waste. J Nucl Mater 467:855–862. https://doi.org/10.1016/j.jnucmat.2015.11.002

    Article  CAS  Google Scholar 

  10. Kim KY, Lee C, Kim PJ, Ryu BH (2004) Dielectric properties on the radiation and thermal aged PEEK. Proc 2004 IEEE Int Conf Solid Dielectr ICSD 1:332–335. https://doi.org/10.1109/ICSD.2004.1350358

    Article  Google Scholar 

  11. Khare N, Limaye PK, Soni NL, Patel RJ (2015) Gamma irradiation effects on thermal, physical and tribological properties of PEEK under water lubricated conditions. Wear 342–343:85–91. https://doi.org/10.1016/j.wear.2015.08.005

    Article  CAS  Google Scholar 

  12. Ash CE, Mysore N (1998) Curing polyketones with high energy radiation, U.S. Patent, US5705539 A, Issued January 6

  13. Lawrence F, Mishra S, Mallika C et al (2012) Degradation in thermal properties and morphology of polyetheretherketone–alumina composites exposed to gamma radiation. J Mater Eng Perform 21:1266–1274. https://doi.org/10.1007/s11665-011-0025-y

    Article  CAS  Google Scholar 

  14. Chen J, Maekawa Y, Asano M, Yoshida M (2007) Double crosslinked polyetheretherketone-based polymer electrolyte membranes prepared by radiation and thermal crosslinking techniques. Polymer (Guildf) 48:6002–6009. https://doi.org/10.1016/j.polymer.2007.08.005

    Article  CAS  Google Scholar 

  15. Richaud E, Ferreira P, Audouin L et al (2010) Radiochemical ageing of poly(ether ether ketone). Eur Polym J 46:731–743. https://doi.org/10.1016/j.eurpolymj.2009.12.026

    Article  CAS  Google Scholar 

  16. Chai L, Jiang H, Zhang B et al (2020) Influence of the gamma irradiation dose on tribological property of polytetrafluoroethylene. Tribol Int 144:106094. https://doi.org/10.1016/j.triboint.2019.106094

    Article  CAS  Google Scholar 

  17. Blundell DJ, Osborn BN (1983) The morphology of poly(aryl-ether-ether-ketone). Polymer (Guildf) 24:953–958. https://doi.org/10.1016/0032-3861(83)90144-1

    Article  CAS  Google Scholar 

  18. Hegazy ESA, Sasuga T, Seguchi T (1992) Irradiation effects on aromatic polymers: 3. Changes in thermal properties by gamma irradiation. Polymer (Guildf) 33:2911–2914. https://doi.org/10.1016/0032-3861(92)90076-9

    Article  CAS  Google Scholar 

  19. McLauchlin AR, Ghita OR, Savage L (2014) Studies on the reprocessability of poly(ether ether ketone) (PEEK). J Mater Process Technol 214:75–80. https://doi.org/10.1016/j.jmatprotec.2013.07.010

    Article  CAS  Google Scholar 

  20. Lawton EJ, Balwit JS, Powell IS (1958) Effect of physical state during the electron irradiation of hydrocarbon polymers. Part I. The influence of physical state on reactions occurring in polyethylene during and following the irradiation. J Polym Sci 125:257–275. https://doi.org/10.1002/pol.1958.1203212501

    Article  Google Scholar 

  21. Mackova A, Malinsky P, Miksova R et al (2014) Characterisation of PEEK, PET and PI implanted with 80 keV Fe+ ions to high fluencies. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 331:176–181. https://doi.org/10.1016/j.nimb.2013.12.045

    Article  CAS  Google Scholar 

  22. Hegazy ESA, Sasuga T, Nishii M, Seguchi T (1992) Irradiation effects on aromatic polymers: 2. Gas evolution during electron-beam irradiation Polymer (Guildf) 33:2904–2910. https://doi.org/10.1016/0032-3861(92)90075-8

    Article  CAS  Google Scholar 

  23. Pei XQ, Bennewitz R, Schlarb AK (2015) Mechanisms of friction and wear reduction by carbon fiber reinforcement of PEEK. Tribol Lett 58:42–51. https://doi.org/10.1007/s11249-015-0520-7

    Article  CAS  Google Scholar 

  24. Lin L, Pei XQ, Bennewitz R, Schlarb AK (2019) Tribological response of PEEK to temperature induced by frictional and external heating. Tribol Lett 67:1–9. https://doi.org/10.1007/s11249-019-1169-4

    Article  CAS  Google Scholar 

  25. Briscoe BJ, Stuart BH, Thomas PS, Williams DR (1991) A comparison of thermal- and solvent-induced relaxation of poly(ether ether ketone) using Fourier transform Raman spectroscopy. Spectrochim Acta Part A Mol Spectrosc 47:1299–1303. https://doi.org/10.1016/0584-8539(91)80219-9

    Article  Google Scholar 

  26. Kong K, Davies RJ, Young RJ, Eichhorn SJ (2008) Molecular and crystal deformation in poly(aryl ether ether ketone) fibers. Macromolecules 41:7519–7524. https://doi.org/10.1021/ma801402w

    Article  CAS  Google Scholar 

  27. Giancaterina S, Rossi A, Rivaton A, Gardette JL (2000) Photochemical evolution of poly(ether ether ketone). Polym Degrad Stab 68:133–144. https://doi.org/10.1016/S0141-3910(99)00181-0

    Article  CAS  Google Scholar 

  28. Puhan D, Wong JSS (2019) Properties of polyetheretherketone (PEEK) transferred materials in a PEEK-steel contact. Tribol Int 135:189–199. https://doi.org/10.1016/j.triboint.2019.02.028

    Article  CAS  Google Scholar 

  29. Liu A, Liu J, Han J, Zhang WX (2017) Evolution of nanoscale zero-valent iron (nZVI) in water: microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. J Hazard Mater 322:129–135. https://doi.org/10.1016/j.jhazmat.2015.12.070

    Article  CAS  PubMed  Google Scholar 

  30. Guo C, Hu Y, Qian H et al (2011) Magnetite (Fe3O4) tetrakaidecahedral microcrystals: synthesis, characterization, and micro-Raman study. Mater Charact 62:148–151. https://doi.org/10.1016/j.matchar.2010.10.016

    Article  CAS  Google Scholar 

  31. Shebanova ON, Lazor P (2003) Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation. J Raman Spectrosc 34:845–852. https://doi.org/10.1002/jrs.1056

    Article  CAS  Google Scholar 

  32. Lu ZP, Friedrich K (1995) On sliding friction and wear of PEEK and its composites. Wear 181–183:624–631. https://doi.org/10.1016/0043-1648(95)90178-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged the financial support from the National key R&D project of China with Project Number of 2017YFE0302500 and the CAS “Light of West China” Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Wang or Lijun Weng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, L., Zhang, B., Qiao, L. et al. Influence of gamma irradiation-induced surface oxidation on tribological property of polyetheretherketone (PEEK). Polym. Bull. 79, 6513–6531 (2022). https://doi.org/10.1007/s00289-021-03825-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03825-4

Keywords

Navigation