Skip to main content

Advertisement

Log in

In vitro release and cytotoxicity activity of 5-fluorouracil entrapped polycaprolactone nanoparticles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, 5-fluorouracil (5-FU) entrapped polycaprolactone nanoparticles (5-FU- PCNPs) have been prepared using double emulsion method. The different factors were examined for assembly to arrive at the best effective formulation of 5-FU-PCNPs formulation for 5-FU–PCNPs, as polymer concentration, stabilizer concentration. The encapsulation efficiency of PCNPs was in the range of 18.8–45.4%. The prepared nanoparticles showed the spherical shape having an average size of 183–675.5 nm, whereas TEM exhibited the prepared nanoparticles have a spherical shape. FTIR, XRPD, confirmed successful insertion of drug in prepared PCNPs. In vitro release of 5-FU from selected formulations showed sustained release from the nanoparticles where slower release was observed when lower PVA concentration was used. Anticancer activity was examined against cell culture for HCT-116 (human colorectal carcinoma), MCF-7(human breast adenocarcinoma), HepG2 (human hepatocellular carcinoma) and A549 (human lung carcinoma) for six formulations 5-FU–PCNPs nanoparticles. The in vitro cytotoxic activity of the prepared formulations was tested showing that these formulations appeared as promising active anticancer formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wang MD, Shin DM, Simons JW, Nie S (2007) Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther 7:833–837

    Google Scholar 

  2. Nie S, Xing Y, Kim GJ et al (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    CAS  PubMed  Google Scholar 

  3. Youan BB (2008) Impact of nanoscience and nanotechnology on controlled drug Delivery. Nanomedicine 3:401–406

    PubMed  Google Scholar 

  4. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACSNano 3:16–20

    CAS  Google Scholar 

  5. Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    CAS  PubMed  Google Scholar 

  6. Cho K, Wang X, Nie S et al (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316

    CAS  PubMed  Google Scholar 

  7. Salerno A, Domingo C, Saurina J (2017) PCL foamed scaffolds loaded with 5-fluorouracil anti-cancer drug prepared by an eco-friendly route. Mater Sci Eng C Mater Biol Appl 75:1191–1197

    CAS  PubMed  Google Scholar 

  8. Nivethaa EAK, Dhanavel S, Rebekah A, Narayanan V, Stephen A (2016) A comparative study of 5-Fluorouracil release from chitosan/silver and chitosan/silver/MWCNT nanocomposites and their cytotoxicity towards MCF-7. Mater Sci Eng C Mater Biol Appl 66:244–250

    CAS  Google Scholar 

  9. Tummala S, Satish Kumar MN, Prakash A (2015) Formulation and characterization of 5- fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi Pharm J 23(3):308–314

    PubMed  Google Scholar 

  10. S Rossi, ed. Australian Medicines Handbook (2013 ed.). Adelaide: The Australian Medicines Handbook Unit Trust, 2013

  11. World Health Organization (WHO) Model list of essential medicines. World Health Organization; October 2013. Accessed April 22, 2014

  12. Arias JL (2008) Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules 13(10):2340–2369

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun L, Chen Y, Zhou Y, Guo D, Fan Y, Guo F, Zheng Y, Chen W (2017) Preparation of 5- fluorouracil-loaded chitosan nanoparticles and study of the sustained releasein vitro and in vivo. Asian J Pharm Sci 12(5):418–423

    PubMed  PubMed Central  Google Scholar 

  14. Zhang N, Yin Y, Xu SJ et al (2008) 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 13:1551–1569

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Arias JL, Ruiz MA, López-Viota M et al (2008) Poly(alkylcyanoacrylate) colloidal particles as vehicles for antitumour drug delivery: a comparative study. Colloids Surf B 62:64–70

    CAS  Google Scholar 

  16. Zhang N, Yin Y, Xu SJ, Chen WS (2008) 5-Fluorouracil:mechanisms of resistance and reversal strategies. Molecules 13(8):1551–1569

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Arias JL, Ruiz MA, Lopez-Viota M, Delgado AV (2008) Poly(alkylcyanoacrylate) colloidal particles as vehicles for antitumour drug delivery: a comparative study. Colloids Surf B: Biointerfaces 62(1):64–70

    CAS  PubMed  Google Scholar 

  18. Sahle FF, Balzus B, Gerecke C, Kleuser B, Bodmeier R (2016) Formulation and in vitro evaluation of polymeric enteric nanoparticles as dermal carriers with pH dependent targeting potential. Eur J Pharm Sci 92:98–109

    CAS  PubMed  Google Scholar 

  19. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  20. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(1):113–142

    CAS  PubMed  Google Scholar 

  21. Kumar P, Gajbhiye KR, Paknikar KM, Gajbhiye V (2019) Current status and future challenges of various polymers as cancer therapeutics. In: Kesharwani P, Paknikar KM, Gajbhiye V (eds) Polymeric Nanoparticles as a Promising Tool for Anti-Cancer Therapeutics. Academic Press, United states

    Google Scholar 

  22. Amin A, Samy M, Abd El-Alim SH, Rabia AEG, Ayoub MMH (2018) Assessment of formulation parameters needed for successful vitamin C entrapped polycaprolactone nanoparticles. Int J Polym Mater Polym Biomater 67(16):942–950

    CAS  Google Scholar 

  23. Othman R, Vladisavljević GT, Nagy ZK (2015) Preparation of biodegradable polymeric nanoparticles for pharmaceutical applications using glass capillary microfluidics. Chem Eng Sci 137:119–130

    CAS  Google Scholar 

  24. Wang S, Chen H, Cai Q, Bei J (2001) Degradation and 5-fluorouracil release behavior in vitro of polycaprolactone/poly(ethylene oxide)/polylactide tri-component copolymer†1. Polym Adv Technol 12(3–4):253–258

    CAS  Google Scholar 

  25. Sastre RL, Blanco MD, Teijón C, Olmo R, Teijón JM (2004) Preparation and characterization of 5-fluorouracil-loaded poly(ϵ-caprolactone) microspheres for drug administration. Drug Dev Res 63(2):41–53

    CAS  Google Scholar 

  26. Canfarotta F, Whitcombe MJ, Piletsky SA (2013) Polymeric nanoparticles for optical sensing. Biotechnol Adv 31:1585–1599

    CAS  PubMed  Google Scholar 

  27. Huang S-H, Hsu T-T, Huang T-H, Lin C-Y, Shie M-Y (2017) Fabrication and characterization of polycaprolactone and tricalcium phosphate composites for tissue engineering applications. J Dental Sci 12:33–43

    Google Scholar 

  28. Ayoub M, Ahmed N, Kalaji N, Charcosset C, Magdy A, Fessi H, Elaissari A (2011) Study of the effect of formulation parameters/variables to control the nanoencapsulation of hydrophilic drug via double emulsion technique. J Biomed Nanotechnol 7:255–262

    CAS  PubMed  Google Scholar 

  29. Amin A, Samy M, Abd El-Alim SH, Rabia AG, Ayoub MMH (2018) Assessment of formulation parameters needed for successful vitamin C entrapped polycaprolactone nanoparticles. Int J Polym Mater Polym Biomater 67:942–950

    CAS  Google Scholar 

  30. Iqbal M, Zafar N, Fessi H, Elaissari A (2015) Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 496:173–190

    CAS  PubMed  Google Scholar 

  31. Samy M, Abdallah HM, Ayoub MMH, Vylegzhanina ME, Volkov AY, Sukhanova TE (2020) Eco-friendly route for encapsulation of 5-fluorouracil into polycaprolactone nanoparticles. Egypt J Chem 63:255–267

    Google Scholar 

  32. Hassan AS, Mady MF, Awad HM, Hafez TS (2017) Synthesis and antitumor activity of some new pyrazolo [1, 5-a] pyrimidines. Chinese Chem Lett 28(2):388–393. https://doi.org/10.1016/j.cclet.2016.10.022

    Article  CAS  Google Scholar 

  33. Emam AN, Loutfy SA, Mostafa AA, Awad HM, Mohamed MB (2017) Cyto-toxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids for bioimaging. RSC Adv 7:23502–23514

    CAS  Google Scholar 

  34. Flefel EM, El-Sayed WA, Mohamed A M, El-Sofany WI, Awad HM (2017) Synthesis and anticancer activity of new 1-Thia-4-azaspiro [4.5] decane, their derived thiazolopyrimidine and 1,3,4-thiadiazole thioglycosides. Molecules 22(170):1–13

    Google Scholar 

  35. Zamora-Mora V, Fernández-Gutiérrez M, González-Gómez Á, Sanz B, Román JS, Goya GF, Hernández R, Mijangos C (2017) Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: from preparation to in vitro studies. Carbohydr Polym 157:361–370

    CAS  PubMed  Google Scholar 

  36. Salar RK, Kumar N (2016) Synthesis and characterization of vincristine loaded folic acid–chitosan conjugated nanoparticles. Resour-Effic Technol 2(4):199–214

    Google Scholar 

  37. Badran MM, Mady MM, Ghannam MM, Shakeel F (2017) Preparation and characterizationof polymeric nanoparticles surface modified with chitosan for target treatmentof colorectal cancer. Int J Biol Macromol 95:643–649

    CAS  PubMed  Google Scholar 

  38. Khoee S, Kardani M (2014) Preparation of PCL/PEG superporous hydrogel containing drug-loaded nanoparticles: the effect of hydrophobic– hydrophilic interface on the physical properties. M Eur Polym J 58:180–190

    CAS  Google Scholar 

  39. Aydin RST, Pulat M (2012) 5-fluorouracil encapsulated chitosan nanoparticles for pHstimulateddrug delivery: evaluation of controlled release kinetics. J Nanomater 2012:42

    Google Scholar 

  40. Samy M, Abd El-Alim SH, Rabia AG, Amin A, Ayoub MMH (2020) Formulation, characterization and in vitro release study of 5-fluorouracil loaded chitosan nanoparticles. Int J Biol Macromol 156:783–791

    CAS  PubMed  Google Scholar 

  41. Ibraheem D, Iqbal M, Agusti G, Fessi H, Elaissari A (2014) Effects of process parameters on the colloidal properties of polycaprolactone microparticles prepared by double emulsion like process. Colloids Surf A: Physicochem Eng Aspects 445:79–91

    CAS  Google Scholar 

  42. Guo Y, Halaev ES, Smith S (2013) Physical stability of pharmaceutical formulations: solid-state characterization of amorphous dispersions: review. Trends Anal Chem 49:137–144

    CAS  Google Scholar 

  43. Singh M, Hagan DO (1998) The preparation and characterization of polymeric antigen delivery systems for oral administration. Adv Drug Delivery Rev 34:285–304

    CAS  Google Scholar 

  44. Prieto C, Calvo LJ (2017) Supercritical fluid extraction of emulsions to nanoencapsulate vitamin E in polycaprolactone,J. Supercrit Fluids 119:274–282

    CAS  Google Scholar 

  45. Ortiz R, Prados J, Melguizo C, Arias JL, Adolfina Ruiz M, Álvarez JP, Caba O, Luque R, Segura A, Aránega A (2012) 5-Fluorouracil-loaded poly(ε-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer. Int J Nanomedicine 7:95–107

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Öztürk K, Mashal AR, Yegin BA, Çalış S (2015) Preparation and in vitro evaluation of 5-fluorouracil-loaded PCL nanoparticles for colon cancer treatment. Pharm Dev Technol. https://doi.org/10.3109/10837450.2015.1116565

    Article  PubMed  Google Scholar 

  47. Babu PK, Maruthi Y, Pratap SV, Sudhakar K, Sadihu R, Prabhakar MN, Song JI, Subha MCS, Rao KC (2015) Development and characterization of polycaprolactone (PCL)/ Poly((R)-3-hydroxybutricacid)(PHB)blend microspheres for tamoxifen DRUG release studies. Int J Pharm Pharm Sci 7(9):95–100

    CAS  Google Scholar 

  48. Katakam P, Phalguna Y, Harinarayana D (2014) Formulation, characterization and in vitro evaluation of capecitabine loaded polycaprolactone-chitosan nanospheres. Bangladesh Pharm J 17:18–24

    Google Scholar 

  49. Li P, Wang Y, Peng Z, P Li, Wang Y, Peng Z, She MF, Kong L (2010) Physichemical property and morphology of 5-fluorouracil loaded chitosan nanoparticles. International Conference on Nanoscience and Nanotechnology

  50. Ashour AE, Badran M, Kumar A, Hussain T, Alsarra IA, Yassin AEB (2019) Physical pegylation enhances the cytotoxicity of 5-fluorouracil-loaded PLGA and PCL nanoparticle. Int J Nanomedicine 14:9259–9273

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang H, Irudayaraj J (2002) Rapid determination of vitamin C by NIR, MIR and FT- raman techniques. J Pharm Pharmacol 54:1247–1255

    CAS  PubMed  Google Scholar 

  52. Guirguis OW, Moselhey MTH (2012) Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. Nat Sci 4:57–67

    CAS  Google Scholar 

  53. Fukushima K, Tabuani D, Camino G (2009) Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater Sci Eng C 29:1433–1441

    CAS  Google Scholar 

  54. Jagadeesh HG, Kusmdevi V (2010) Tamoxifen loaded poly (εcaprolactone) based injectable microspheres for breast cancer. Int J Pharm Pharm Sci 2(4):189–195

    Google Scholar 

  55. Wu Y, Clark RL (2007) Controllable porous polymer particles generated by electrospraying. J Colloid Interface Sci 310:529–535

    CAS  PubMed  Google Scholar 

  56. Iqbal S, Rashid MH, Arbab AS, Khan M (2017) Encapsulation of anticancer drugs (5-Fluorouracil and Paclitaxel) into polycaprolactone (PCL) nanofibers and in vitro testing for sutained and targeted therapy. J Biomed Nanotechnol 13(4):355–366

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18

    CAS  PubMed  Google Scholar 

  58. Heng PW, Chan LW, Easterbrook MG, Li X (2001) Investigation of the influence of mean HPMC particle size and number of polymer particles on the release of aspirin from swellable hydrophilic matrix tablets. J Control Release 76(1–2):39–49

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MS was involved in conceptualization, methodology, investigation, resources, data curation, writing—reviewing and editing. HMA contributed to methodology, visualization, conducted the biological assays and provided the experimental procedures and results of biological part. MMHA was involved in conceptualization, methodology, writing—reviewing and editing, visualization, funding acquisition.

Corresponding author

Correspondence to Moshera Samy.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samy, M., Abdallah, H.M., Awad, H.M. et al. In vitro release and cytotoxicity activity of 5-fluorouracil entrapped polycaprolactone nanoparticles. Polym. Bull. 79, 6645–6671 (2022). https://doi.org/10.1007/s00289-021-03804-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03804-9

Keywords

Navigation