Skip to main content

Advertisement

Log in

Poly(ionic liquid)s-based polyurethane blends: effect of polyols structure and ILs counter cations in CO2 sorption performance of PILs physical blends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) capture from natural gas, and further utilization is an essential issue for greenhouse gas reduction. Poly(ionic liquid)s (PILs) assemble ILs unique properties, with those of polymers being versatile materials for CO2 capture from flue gas (CO2/N2) and natural gas (CO2/CH4). PILs based on polyurethanes obtained with different polyols and ILs cations were blended in different proportions aiming to improve PILs CO2 sorption capacity. Two different polyols structures (PC and PG) and ILs counter cations (imidazolium and phosphonium) were tested to evaluate how they influence PILs blends CO2 sorption performance. PILs and PILs blends were characterized by SEC, FTIR, DSC, TGA, DMTA, AFM, and CO2 sorption that were carried out using the pressure-decay technique. PILs blends presented good thermal stability and mechanical properties. PILs blend polyurethane backbones compositions can be tuned aiming to increase CO2 sorption capacity. As far as we know, all obtained PILs blends presented higher CO2 sorption capacity results compared with other Poly(ionic liquid)s reported in the literature. The best CO2 sorption result was obtained for PIL blend with imidazolium (PLIPC95-PG5-BMIM = 116.9 mgCO2/g at 303.15 K and 10 bar).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW (2016) Direct capture of CO2 from ambient air. Chem Rev 116:11840–11876

    Article  Google Scholar 

  2. Zulfiqar S, Sarwar MI, Mecerreyes D (2015) Polymeric ionic liquids for CO2 capture and separation: potential, progress and challenges. Polym Chem 6:6435–6451

    Article  CAS  Google Scholar 

  3. Morozova SM, Shaplov AS, Lozinskaya EI et al (2017) Ionic polyurethanes as a new family of poly(ionic liquid)s for efficient CO2 capture. Macromolecules 50:2814–2824. https://doi.org/10.1021/acs.macromol.6b02812

    Article  CAS  Google Scholar 

  4. Sadeghpour M, Yusoff R, Aroua MK (2017) Polymeric ionic liquids (PILs) for CO2 capture. Rev Chem Eng 33:183–200. https://doi.org/10.1515/revce-2015-0070

    Article  CAS  Google Scholar 

  5. Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648

    Article  CAS  Google Scholar 

  6. Zhu J, He K, Zhang H, Xin F (2012) Effect of swelling on carbon dioxide adsorption by poly(ionic liquid)s. Adsorpt Sci Technol 30:35–41. https://doi.org/10.1260/0263-6174.30.1.35

    Article  CAS  Google Scholar 

  7. Bernard FL, Polesso BB, Cobalchini FW et al (2016) CO2 capture: tuning cation-anion interaction in urethane based poly (ionic liquids). Polymer 102:199–208. https://doi.org/10.1016/j.polymer.2016.08.095

    Article  CAS  Google Scholar 

  8. Dai Z, Noble RD, Gin DL et al (2016) Combination of ionic liquids with membrane technology: a new approach for CO2 separation. J Memb Sci 497:1–20

    Article  CAS  Google Scholar 

  9. Eftekhari A, Saito T (2017) Synthesis and properties of polymerized ionic liquids. Eur Polym J 90:245–272

    Article  CAS  Google Scholar 

  10. Hasib-ur-Rahman M, Siaj M, Larachi F (2010) Ionic liquids for CO2 capture-development and progress. Chem Eng Process Process Intensif 49:313–322

    Article  CAS  Google Scholar 

  11. Zhao Z, Dong H, Zhang X (2012) The research progress of CO2 capture with ionic liquids. Chin J Chem Eng 20:120–129. https://doi.org/10.1016/S1004-9541(12)60371-1

    Article  CAS  Google Scholar 

  12. Green O, Grubjesic S, Lee S, Firestone MA (2009) The design of polymeric ionic liquids for the preparation of functional materials. Polym Rev 49:339–360. https://doi.org/10.1080/15583720903291116

    Article  CAS  Google Scholar 

  13. Yuan J, Antonietti M (2011) Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer 52:1469–1482

    Article  CAS  Google Scholar 

  14. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036. https://doi.org/10.1016/j.progpolymsci.2013.04.002

    Article  CAS  Google Scholar 

  15. Lee SY, Yasuda T, Watanabe M (2010) Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells. J Power Sources 195:5909–5914. https://doi.org/10.1016/j.jpowsour.2009.11.045

    Article  CAS  Google Scholar 

  16. Li P, Zhao Q, Anderson JL et al (2010) Synthesis of copolyimides based on room temperature ionic liquid diamines. J Polym Sci Part A Polym Chem 48:4036–4046. https://doi.org/10.1002/pola.24189

    Article  CAS  Google Scholar 

  17. Shaplov AS, Morozova SM, Lozinskaya EI et al (2016) Turning into poly(ionic liquid)s as a tool for polyimide modification: synthesis, characterization and CO2 separation properties. Polym Chem 7:580–591. https://doi.org/10.1039/c5py01553g

    Article  CAS  Google Scholar 

  18. Lee M, Choi UH, Salas-De La Cruz D et al (2011) Imidazolium polyesters: structure-property relationships in thermal behavior, ionic conductivity, and morphology. Adv Funct Mater 21:708–717. https://doi.org/10.1002/adfm.201001878

    Article  CAS  Google Scholar 

  19. Bhavsar RS, Kumbharkar SC, Rewar AS, Kharul UK (2014) Polybenzimidazole based film forming polymeric ionic liquids: synthesis and effects of cation-anion variation on their physical properties. Polym Chem 5:4083–4096. https://doi.org/10.1039/c3py01709e

    Article  CAS  Google Scholar 

  20. Kumbharkar SC, Bhavsar RS, Kharul UK (2014) Film forming polymeric ionic liquids (PILs) based on polybenzimidazoles for CO2 separation. RSC Adv 4:4500–4503. https://doi.org/10.1039/c3ra44632h

    Article  CAS  Google Scholar 

  21. Gao R, Zhang M, Wang SW et al (2013) Polyurethanes containing an imidazolium diol-based ionic-liquid chain extender for incorporation of ionic-liquid electrolytes. Macromol Chem Phys 214:1027–1036. https://doi.org/10.1002/macp.201200688

    Article  CAS  Google Scholar 

  22. Magalhães TO, Aquino AS, Vecchia FD et al (2014) Syntheses and characterization of new poly(ionic liquid)s designed for CO2 capture. RSC Adv 4:18164–18170. https://doi.org/10.1039/c4ra00071d

    Article  CAS  Google Scholar 

  23. Fernández M, Carreño LÁ, Bernard F et al (2016) Poly(ionic liquid)s nanoparticles applied in CO2 capture. Macromol Symp 368:98–106. https://doi.org/10.1002/masy.201500148

    Article  CAS  Google Scholar 

  24. Matsumoto K, Endo T (2011) Synthesis of networked polymers by copolymerization of monoepoxy- substituted lithium sulfonylimide and diepoxy-substituted poly(ethylene glycol), and their properties. J Polym Sci Part A Polym Chem 49:1874–1880. https://doi.org/10.1002/pola.24614

    Article  CAS  Google Scholar 

  25. Kozo M, Takeshi E (2010) Synthesis of networked polymers with lithium counter cations from a difunctional epoxide containing poly(ethylene glycol) and an epoxide monomer carrying a lithium sulfonate salt moiety. J Polym Sci Part A Polym Chem 48:3113–3118. https://doi.org/10.1002/pola.24092

    Article  CAS  Google Scholar 

  26. Matsumoto K, Endo T (2013) Design and synthesis of ionic-conductive epoxy-based networked polymers. Reactiv Funct Polym 73:278–282. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2012.04.0129

    Article  CAS  Google Scholar 

  27. Tang J, Shen Y, Radosz M, Sun W (2009) Isothermal carbon dioxide sorption in poly(ionic liquid)s. Ind Eng Chem Res 48:9113–9118. https://doi.org/10.1021/ie900292p

    Article  CAS  Google Scholar 

  28. Tang J, Tang H, Sun W et al (2005) Low-pressure CO2 sorption in ammonium-based poly(ionic liquid)s. Polymer 46:12460–12467. https://doi.org/10.1016/j.polymer.2005.10.082

    Article  CAS  Google Scholar 

  29. Tang J, Tang H, Sun W et al (2005) Poly(ionic liquid)s as New Materials for CO2. Absorption 43(22):5477–5489. https://doi.org/10.1002/pola.21031

    Article  CAS  Google Scholar 

  30. Tang J, Sun W, Tang H et al (2005) Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38:2037–2039. https://doi.org/10.1021/ma047574z

    Article  CAS  Google Scholar 

  31. Mineo PG, Livoti L, Giannetto M et al (2009) Very fast CO2 response and hydrophobic properties of novel poly(ionic liquid)s. J Mater Chem 19:8861–8870. https://doi.org/10.1039/b912379b

    Article  CAS  Google Scholar 

  32. Samadi A, Kemmerlin RK, Husson SM (2010) Polymerized ionic liquid sorbents for CO2 separation. Energy Fuels 24:5797–5804. https://doi.org/10.1021/ef101027s

    Article  CAS  Google Scholar 

  33. Xiong YB, Wang H, Wang YJ, Wang RM (2012) Novel imidazolium-based poly(ionic liquid)s: preparation, characterization, and absorption of CO2. Polym Adv Technol 23:835–840. https://doi.org/10.1002/pat.1973

    Article  CAS  Google Scholar 

  34. Bhavsar RS, Kumbharkar SC, Kharul UK (2012) Polymeric ionic liquids (PILs): effect of anion variation on their CO2 sorption. J Memb Sci 389:305–315. https://doi.org/10.1016/j.memsci.2011.10.042

    Article  CAS  Google Scholar 

  35. Wilke A, Yuan J, Antonietti M, Weber J (2012) Enhanced carbon dioxide adsorption by a mesoporous poly(ionic liquid). ACS Macro Lett 1:1028–1031. https://doi.org/10.1021/mz3003352

    Article  CAS  PubMed  Google Scholar 

  36. Privalova EI, Karjalainen E, Nurmi M et al (2013) Imidazolium-based poly(ionic liquid)s as new alternatives for CO2 capture. Chemsuschem 6:1500–1509. https://doi.org/10.1002/cssc.201300120

    Article  CAS  PubMed  Google Scholar 

  37. Bernard FL, Polesso BB, Cobalchini FW et al (2017) Hybrid alkoxysilane-functionalized urethane-imide-based poly(ionic liquids) as a new platform for carbon dioxide capture. Energy Fuels 31:9840–9849. https://doi.org/10.1021/acs.energyfuels.7b02027

    Article  CAS  Google Scholar 

  38. Bernard FL, dos Santos LM, Schwab MB et al (2019) Polyurethane-based poly(ionic liquid)s for CO2 removal from natural gas. J Appl Polym Sci 136:4–11. https://doi.org/10.1002/app.47536

    Article  CAS  Google Scholar 

  39. Supasitmongkol S, Styring P (2010) High CO2 solubility in ionic liquids and a tetraalkylammonium-based poly (ionic liquid). Energy Environ Sci 3:1961–1972. https://doi.org/10.1039/c0ee00293c

    Article  CAS  Google Scholar 

  40. Shaplov AS, Marcilla R, Mecerreyes D (2015) Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s. Electrochim Acta 175:18–34. https://doi.org/10.1016/j.electacta.2015.03.038

    Article  CAS  Google Scholar 

  41. Bara JE, Gin DL, Noble RD (2008) Effect of anion on gas separation performance of polymer-room-temperature ionic liquid composite membranes. Ind Eng Chem Res 47:9919–9924. https://doi.org/10.1021/ie801019x

    Article  CAS  Google Scholar 

  42. Bara JE, Gabriel CJ, Hatakeyama ES et al (2008) Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents. J Memb Sci 321:3–7. https://doi.org/10.1016/j.memsci.2007.12.033

    Article  CAS  Google Scholar 

  43. Baker RW, Low BT (2014) Gas separation membrane materials: a perspective. Macromolecules 47:6999–7013. https://doi.org/10.1021/ma501488s

    Article  CAS  Google Scholar 

  44. Sanders DF, Smith ZP, Guo R et al (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54:4729–4761. https://doi.org/10.1016/j.polymer.2013.05.075

    Article  CAS  Google Scholar 

  45. Zhang Y, Sunarso J, Liu S, Wang R (2013) Current status and development of membranes for CO2/CH4 separation: a review. Int J Greenh Gas Control 12:84–107. https://doi.org/10.1016/j.ijggc.2012.10.009

    Article  CAS  Google Scholar 

  46. Reijerkerk SR, Knoef MH, Nijmeijer K, Wessling M (2010) Poly(ethylene glycol) and poly(dimethyl siloxane): combining their advantages into efficient CO2 gas separation membranes. J Memb Sci 352:126–135. https://doi.org/10.1016/j.memsci.2010.02.008

    Article  CAS  Google Scholar 

  47. Hosseini SS, Teoh MM, Chung TS (2008) Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49:1594–1603. https://doi.org/10.1016/j.polymer.2008.01.052

    Article  CAS  Google Scholar 

  48. Ben Hamouda S, Nguyen QT, Langevin D, Roudesli S (2010) Poly(vinylalcohol)/poly(ethyleneglycol)/poly(ethyleneimine) blend membranes—Structure and CO2 facilitated transport. Comptes Rendus Chim 13:372–379. https://doi.org/10.1016/j.crci.2009.10.009

    Article  CAS  Google Scholar 

  49. Welton T (1999) Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem Rev 99:2071–2083. https://doi.org/10.1021/cr980032t

    Article  CAS  PubMed  Google Scholar 

  50. Jain N, Kumar A, Chauhan SMS (2005) Metalloporphyrin and heteropoly acid catalyzed oxidation of C=NOH bonds in an ionic liquid: biomimetic models of nitric oxide synthase. Tetrahedron Lett 46:2599–2602. https://doi.org/10.1016/j.tetlet.2005.02.088

    Article  CAS  Google Scholar 

  51. Bernard FL, Duczinski RB, Rojas MF et al (2018) Cellulose based poly(ionic liquids): tuning cation-anion interaction to improve carbon dioxide sorption. Fuel 211:76–86. https://doi.org/10.1016/j.fuel.2017.09.057

    Article  CAS  Google Scholar 

  52. Williams SR, Wang W, Winey KI, Long TE (2008) Synthesis and morphology of segmented poly(tetramethylene oxide)-based polyurethanes containing phosphonium salts. Macromolecules 41:9072–9079. https://doi.org/10.1021/ma801942f

    Article  CAS  Google Scholar 

  53. Sadeghi M, Semsarzadeh MA, Barikani M, Ghalei B (2011) Study on the morphology and gas permeation property of polyurethane membranes. J Memb Sci 385–386:76–85. https://doi.org/10.1016/j.memsci.2011.09.024

    Article  CAS  Google Scholar 

  54. Zhu R, Wang Y, Zhang Z et al (2016) Synthesis of polycarbonate urethane elastomers and effects of the chemical structures on their thermal, mechanical and biocompatibility properties. Heliyon. https://doi.org/10.1016/j.heliyon.2016.e00125

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xi T, Tang L, Hao W et al (2018) Morphology and pervaporation performance of ionic liquid and waterborne polyurethane composite membranes. RSC Adv 8:7792–7799. https://doi.org/10.1039/c7ra13761c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chang MT, Lee JY, Rwei SP et al (2017) Effects of NCO/OH ratios and polyols during polymerization of water-based polyurethanes on polyurethane modified polylactide fabrics. Fibers Polym 18:203–211. https://doi.org/10.1007/s12221-017-6382-x

    Article  CAS  Google Scholar 

  57. Liu L, Zheng Z, Gu C, Wang X (2010) The poly(urethane-ionic liquid)/multi-walled carbon nanotubes composites. Compos Sci Technol 70:1697–1703. https://doi.org/10.1016/j.compscitech.2010.06.007

    Article  CAS  Google Scholar 

  58. Zhang M, Hemp ST, Zhang M et al (2014) Water-dispersible cationic polyurethanes containing pendant trialkylphosphoniums. Polym Chem 5:3795–3803. https://doi.org/10.1039/c3py01779f

    Article  CAS  Google Scholar 

  59. Jime EJ (2011) Viscoelasticity of combined thermally insensitive terpolyacrylamides. Polym Eng Sci 51:2473–2482. https://doi.org/10.1002/pen.22015

    Article  CAS  Google Scholar 

  60. Talakesh MM, Sadeghi M, Chenar MP, Khosravi A (2012) Gas separation properties of poly(ethylene glycol)/poly(tetramethylene glycol) based polyurethane membranes. J Memb Sci 415–416:469–477. https://doi.org/10.1016/j.memsci.2012.05.033

    Article  CAS  Google Scholar 

  61. Tomé LC, Marrucho IM (2016) Ionic liquid-based materials: a platform to design engineered CO2 separation membranes. Chem Soc Rev 45:2785–2824. https://doi.org/10.1039/c5cs00510h

    Article  CAS  PubMed  Google Scholar 

  62. Signori F, Boggioni A, Righetti MC et al (2015) Evidences of transesterification, chain branching and cross-linking in a biopolyester commercial blend upon reaction with dicumyl peroxide in the melt. Macromol Mater Eng 300:153–160. https://doi.org/10.1002/mame.201400187

    Article  CAS  Google Scholar 

  63. Lins LC, Livi S, Duchet-Rumeau J, Gérard J-F (2015) Phosphonium ionic liquids as new compatibilizing agents of biopolymer blends composed of poly(butylene-adipate-co-terephtalate)/poly(lactic acid) (PBAT/PLA). RSC Adv 5:59082–59092. https://doi.org/10.1039/c5ra10241c

    Article  CAS  Google Scholar 

  64. Chen M, White BT, Kasprzak CR, Long TE (2018) Advances in phosphonium-based ionic liquids and poly(ionic liquid)s as conductive materials. Eur Polym J 108:28–37. https://doi.org/10.1016/j.eurpolymj.2018.08.015

    Article  CAS  Google Scholar 

  65. Fazeli N, Barikani M, Barikani M (2013) Study on thermal properties of polyurethane-urea elastomers prepared with different dianiline chain extenders. J Polym Eng 33:87–94. https://doi.org/10.1515/polyeng-2012-0137

    Article  CAS  Google Scholar 

  66. Liu B, Tian H, Zhu L (2015) Structures and properties of polycarbonate modified polyether-polyurethanes prepared by transurethane polycondensation. J Appl Polym Sci 132:1–8. https://doi.org/10.1002/app.42804

    Article  CAS  Google Scholar 

  67. Dai Z, Ansaloni L, Gin DL et al (2017) Facile fabrication of CO2 separation membranes by cross-linking of poly(ethylene glycol) diglycidyl ether with a diamine and a polyamine-based ionic liquid. J Memb Sci 523:551–560. https://doi.org/10.1016/j.memsci.2016.10.026

    Article  CAS  Google Scholar 

  68. Pashaei S, Siddaramaiah SAA (2010) Thermal degradation kinetics of polyurethane/organically modified montmorillonite clay nanocomposites by TGA. J Macromol Sci Part A Pure Appl Chem 47:777–783. https://doi.org/10.1080/10601325.2010.491756

    Article  CAS  Google Scholar 

  69. Cao Y, Mu T (2014) Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind Eng Chem Res 53:8651–8664. https://doi.org/10.1021/ie5009597

    Article  CAS  Google Scholar 

  70. Hao Y, Peng J, Hu S et al (2010) Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA-MS analysis and DFT calculations. Thermochim Acta 501:78–83. https://doi.org/10.1016/j.tca.2010.01.013

    Article  CAS  Google Scholar 

  71. Livi S, Bugatti V, Soares BG, Duchet-Rumeau J (2014) Structuration of ionic liquids in a poly(butylene-adipate-co-terephthalate) matrix: its influence on the water vapour permeability and mechanical properties. Green Chem 16:3758–3762. https://doi.org/10.1039/c4gc00969j

    Article  CAS  Google Scholar 

  72. Park KI, Xanthos M (2009) A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym Degrad Stab 94:834–844. https://doi.org/10.1016/j.polymdegradstab.2009.01.030

    Article  CAS  Google Scholar 

  73. Ahmady A, Hashim MA, Aroua MK (2011) Absorption of carbon dioxide in the aqueous mixtures of methyldiethanolamine with three types of imidazolium-based ionic liquids. Fluid Phase Equilib 309:76–82. https://doi.org/10.1016/j.fluid.2011.06.029

    Article  CAS  Google Scholar 

  74. Gabrienko AA, Ewing AV, Chibiryaev AM et al (2016) New insights into the mechanism of interaction between CO2 and polymers from thermodynamic parameters obtained by in situ ATR-FTIR spectroscopy. Phys Chem Chem Phys 18:6465–6475. https://doi.org/10.1039/c5cp06431g

    Article  CAS  PubMed  Google Scholar 

  75. Tomasko DL, Li H, Liu D et al (2003) A review of CO2 applications in the processing of polymers. Ind Eng Chem Res 42:6431–6456. https://doi.org/10.1021/ie030199z

    Article  CAS  Google Scholar 

  76. Yu G, Hu X, Wang X et al (2014) Characterization of low angle grain boundary in large sapphire crystal grown by the kyropoulos method. J Cryst Growth 405:59–63. https://doi.org/10.1016/j.jcrysgro.2014.07.053

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank PETROBRAS for financial support (Grant number: 4600578905); Sandra Einloft thanks CNPq for the research scholarship (Grant number: 2018/00372-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murilo da Luz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Luz, M., Dias, G., Zimmer, H. et al. Poly(ionic liquid)s-based polyurethane blends: effect of polyols structure and ILs counter cations in CO2 sorption performance of PILs physical blends. Polym. Bull. 79, 6123–6139 (2022). https://doi.org/10.1007/s00289-021-03799-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03799-3

Keywords

Navigation