Skip to main content

Advertisement

Log in

Application of polydopamine on the implant surface modification

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The exceptional adhesive properties of polydopamine (PDA) and its ability to perfectly fix various biomolecules and metal ions are conducive for the development of appropriate modifications of implant surfaces. Over the recent years, several combinations of different substrates and surface modification molecules and/or ions have been tested effectively with PDA. In addition, a number of these combinations were proved to have good biocompatibility and specific functions. Therefore, this article summarizes the latest developments in implant surface modification using PDA, in various fields ranging from orthopedics and dentistry to corneal and cardiovascular implants. In addition to osteogenesis, the antibacterial and anti-inflammatory functions of PDA-coated surfaces are also discussed. These studies suggest that PDA, which has strong adhesive properties and good biocompatibility, has potential for use in the surface modification of a variety of functional implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wolford ML, Palso K, Bercovitz A (2015) Hospitalization for total hip replacement among inpatients aged 45 and over: United States, 2000–2010. NCHS Data Brief 186:1–8

    Google Scholar 

  2. Bishop JA, Palanca AA, Bellino MJ, Lowenberg DW (2012) Assessment of compromised fracture healing. J Am Academy Orthopaedic Surg 20(5):273–82. https://doi.org/10.5435/jaaos-20-05-273

    Article  Google Scholar 

  3. Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M (2005) Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J bone Joint Surg Am Volume 87(7):1487–97. https://doi.org/10.2106/jbjs.D.02441

    Article  Google Scholar 

  4. Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34(13):3174–83. https://doi.org/10.1016/j.biomaterials.2013.01.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sheikholeslam M, Wright MEE, Jeschke MG, Amini-Nik S. (2018) Biomaterials for skin substitutes. Advanced healthcare materials. 7(5). doi: https://doi.org/10.1002/adhm.201700897.

  6. Jemat A, Ghazali MJ, Razali M, Otsuka Y (2015) Surface modifications and their effects on titanium dental implants. BioMed Res Int 2015:791725. https://doi.org/10.1155/2015/791725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Poh CK, Shi Z, Tan XW, Liang ZC, Foo XM, Tan HC et al (2011) Cobalt chromium alloy with immobilized BMP peptide for enhanced bone growth. J Orthopaedic Res Off Pub Orthopaed Res Soc 29(9):1424–30. https://doi.org/10.1002/jor.21409

    Article  CAS  Google Scholar 

  8. Nijhuis AW, Leeuwenburgh SC, Jansen JA (2010) Wet-chemical deposition of functional coatings for bone implantology. Macromol Biosci 10(11):1316–29. https://doi.org/10.1002/mabi.201000142

    Article  CAS  PubMed  Google Scholar 

  9. Akemi Ooka A, Garrell RL (2000) Surface-enhanced Raman spectroscopy of DOPA-containing peptides related to adhesive protein of marine mussel, Mytilus edulis. Biopolymers. 57(2):92–102. doi: https://doi.org/10.1002/(sici)1097-0282(2000)57:2<92::Aid-bip6>3.0.Co;2-4.

  10. Xu Z, Wu Y, Wu H, Sun N, Deng C (2021) Hydrophilic polydopamine-derived mesoporous channels for loading Ti(IV) ions for salivary phosphoproteome research. Analytica Chimica Acta 1146:53–60. https://doi.org/10.1016/j.aca.2020.12.038

    Article  CAS  PubMed  Google Scholar 

  11. Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40(7):4244–58. https://doi.org/10.1039/c1cs15026j

    Article  CAS  PubMed  Google Scholar 

  12. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science (New York, NY). 318(5849):426–30. https://doi.org/10.1126/science.1147241

    Article  CAS  Google Scholar 

  13. Simon JD, Peles DN (2010) The red and the black. Acc Chem Res 43(11):1452–60. https://doi.org/10.1021/ar100079y

    Article  CAS  PubMed  Google Scholar 

  14. Sever MJ, Weisser JT, Monahan J, Srinivasan S, Wilker JJ (2004) Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angewandte Chemie (Int Ed Eng) 43(4):448–50. https://doi.org/10.1002/anie.200352759

    Article  Google Scholar 

  15. Li H, Cui D, Cai H, Zhang L, Chen X, Sun J et al (2013) Use of surface plasmon resonance to investigate lateral wall deposition kinetics and properties of polydopamine films. Biosensors Bioelectro 41:809–14. https://doi.org/10.1016/j.bios.2012.10.021

    Article  CAS  Google Scholar 

  16. Delparastan P, Malollari KG, Lee H, Messersmith PB (2019) Direct Evidence for the Polymeric Nature of Polydopamine. Angewandte Chemie (Int Ed Eng) 58(4):1077–82. https://doi.org/10.1002/anie.201811763

    Article  CAS  Google Scholar 

  17. Sileika TS, Barrett DG, Zhang R, Lau KH, Messersmith PB (2013) Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angewandte Chemie (Int Ed English) 52(41):10766–70. https://doi.org/10.1002/anie.201304922

    Article  CAS  PubMed Central  Google Scholar 

  18. Bernsmann F, Ball V, Addiego F, Ponche A, Michel M, Gracio JJ et al (2011) Dopamine-melanin film deposition depends on the used oxidant and buffer solution. Langmuir ACS J Surf Colloids 27(6):2819–25. https://doi.org/10.1021/la104981s

    Article  CAS  Google Scholar 

  19. Tan Y, Deng W, Li Y, Huang Z, Meng Y, Xie Q et al (2010) Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications. J Phys Chem B 114(15):5016–24. https://doi.org/10.1021/jp100922t

    Article  CAS  PubMed  Google Scholar 

  20. Li S, Wang H, Young M, Xu F, Cheng G, Cong H (2019) Properties of electropolymerized dopamine and its analogues. Langmuir ACS J Surf Colloids 35(5):1119–25. https://doi.org/10.1021/acs.langmuir.8b01444

    Article  CAS  Google Scholar 

  21. Waite JH (2008) Mussel power. Nature Mater 7(1):8–9. https://doi.org/10.1038/nmat2087

    Article  CAS  Google Scholar 

  22. Ku SH, Ryu J, Hong SK, Lee H, Park CB (2010) General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials 31(9):2535–41. https://doi.org/10.1016/j.biomaterials.2009.12.020

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Ai K, Liu J, Deng M, He Y, Lu L (2013) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater (Deerfield Beach, Fla). 25(9):1353–9. https://doi.org/10.1002/adma.201204683

    Article  CAS  Google Scholar 

  24. Ku SH, Lee M, Park CB (2013) Carbon-based nanomaterials for tissue engineering. Adv Healthcare Mater 2(2):244–60. https://doi.org/10.1002/adhm.201200307

    Article  CAS  Google Scholar 

  25. Li T, Ma H, Ma H, Ma Z, Qiang L, Yang Z et al (2019) Mussel-inspired nanostructures potentiate the immunomodulatory properties and angiogenesis of mesenchymal stem cells. ACS Appl Mater Interfaces 11(19):17134–46. https://doi.org/10.1021/acsami.8b22017

    Article  CAS  PubMed  Google Scholar 

  26. Poinard B, Lam SAE, Neoh KG, Kah JCY (2019) Mucopenetration and biocompatibility of polydopamine surfaces for delivery in an Ex Vivo porcine bladder. J Control Release Off J Control Release Soc 300:161–73. https://doi.org/10.1016/j.jconrel.2019.02.041

    Article  CAS  Google Scholar 

  27. Alves PES, Oliveira M, Marcos de Almeida P, Martins FA, Amélia de Carvalho Melo Cavalcante A, de Jesus Aguiar Dos Santos Andrade T, et al. (2019) Determination by chromatography and cytotoxotoxic and oxidative effects of pyriproxyfen and pyridalyl. Chemosphere. 224:398–406. doi: https://doi.org/10.1016/j.chemosphere.2019.02.037

  28. Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L et al (2019) Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano 13(8):8537–65. https://doi.org/10.1021/acsnano.9b04436

    Article  CAS  PubMed  Google Scholar 

  29. Tsai WB, Chien CY, Thissen H, Lai JY (2011) Dopamine-assisted immobilization of poly(ethylene imine) based polymers for control of cell-surface interactions. Acta Biomaterialia 7(6):2518–25. https://doi.org/10.1016/j.actbio.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  30. Anderson TH, Yu J, Estrada A, Hammer MU, Waite JH, Israelachvili JN (2010) The contribution of DOPA to substrate-peptide adhesion and internal cohesion of mussel-inspired synthetic peptide films. Adv Func Mater 20(23):4196–205. https://doi.org/10.1002/adfm.201000932

    Article  CAS  Google Scholar 

  31. Simon JD (2000) Spectroscopic and dynamic studies of the epidermal chromophores trans-urocanic acid and eumelanin. Acc Chem Res 33(5):307–13. https://doi.org/10.1021/ar970250t

    Article  CAS  PubMed  Google Scholar 

  32. Riesz J, Sarna T, Meredith P (2006) Radiative relaxation in synthetic pheomelanin. J Phys Chem B 110(28):13985–90. https://doi.org/10.1021/jp054869l

    Article  CAS  PubMed  Google Scholar 

  33. Forest SE, Simon JD (1998) Wavelength-dependent photoacoustic calorimetry study of melanin. Photochem Photobiol 68(3):296–298

    Article  CAS  Google Scholar 

  34. Meredith P, Sarna T (2006) The physical and chemical properties of eumelanin. Pigment Cell Res 19(6):572–94. https://doi.org/10.1111/j.1600-0749.2006.00345.x

    Article  CAS  PubMed  Google Scholar 

  35. Yu X, Walsh J, Wei M (2013) Covalent immobilization of collagen on titanium through polydopamine coating to improve cellular performances of MC3T3-E1 cells. RSC Advances 4(14):7185–92. https://doi.org/10.1039/c3ra44137g

    Article  CAS  PubMed  Google Scholar 

  36. Zhao L, Hu Y, Xu D, Cai K (2014) Surface functionalization of titanium substrates with chitosan-lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion. Colloids Surf B Biointerfaces 119:115–25. https://doi.org/10.1016/j.colsurfb.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  37. He R, Lu Y, Ren J, Wang Z, Huang J, Zhu L et al (2017) Decreased fibrous encapsulation and enhanced osseointegration in vitro by decorin-modified titanium surface. Colloids Surf B Biointerfaces 155:17–24. https://doi.org/10.1016/j.colsurfb.2017.03.055

    Article  CAS  PubMed  Google Scholar 

  38. Wang Z, Zeng J, Tan G, Liao J, Zhou L, Chen J et al (2018) Incorporating catechol into electroactive polypyrrole nanowires on titanium to promote hydroxyapatite formation. Bioactive Mater 3(1):74–9. https://doi.org/10.1016/j.bioactmat.2017.05.006

    Article  Google Scholar 

  39. Yuan Z, Tao B, He Y, Mu C, Liu G, Zhang J et al (2019) Remote eradication of biofilm on titanium implant via near-infrared light triggered photothermal/photodynamic therapy strategy. Biomaterials 223:119479. https://doi.org/10.1016/j.biomaterials.2019.119479

    Article  CAS  PubMed  Google Scholar 

  40. He S, Zhou P, Wang L, Xiong X, Zhang Y, Deng Y et al (2014) Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant. J R Soc Interface 11(95):20140169. https://doi.org/10.1098/rsif.2014.0169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tran HA, Tran PA (2019) Immobilization-enhanced eradication of bacterial biofilms and in situ antimicrobial coating of implant material surface—An in vitro study. Int J Nanomed 14:9351–60. https://doi.org/10.2147/ijn.S219487

    Article  CAS  Google Scholar 

  42. Wang Y, Qi H, Miron RJ, Zhang Y (2019) Modulating macrophage polarization on titanium implant surface by poly(dopamine)-assisted immobilization of IL4. Clin Implant Dentistry Relat Res 21(5):977–86. https://doi.org/10.1111/cid.12819

    Article  Google Scholar 

  43. Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D et al (2018) Multisociety Consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke Official J Int Stroke Soc 13(6):612–32. https://doi.org/10.1177/1747493018778713

    Article  Google Scholar 

  44. Sin MC, Sun YM, Chang Y (2014) Zwitterionic-based stainless steel with well-defined polysulfobetaine brushes for general bioadhesive control. ACS Appl Mater Inter 6(2):861–73. https://doi.org/10.1021/am4041256

    Article  CAS  Google Scholar 

  45. Lai M, Jin Z, Qiao W (2017) Surface immobilization of gelatin onto TiO(2) nanotubes to modulate osteoblast behavior. Colloids Surf B Biointerfaces 159:743–9. https://doi.org/10.1016/j.colsurfb.2017.08.043

    Article  CAS  PubMed  Google Scholar 

  46. Yuan Z, Tao B, He Y, Liu J, Lin C, Shen X et al (2019) Biocompatible MoS(2)/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation. Biomaterials 217:119290. https://doi.org/10.1016/j.biomaterials.2019.119290

    Article  CAS  PubMed  Google Scholar 

  47. Ding X, Zhang Y, Ling J, Lin C (2018) Rapid mussel-inspired synthesis of PDA-Zn-Ag nanofilms on TiO(2) nanotubes for optimizing the antibacterial activity and biocompatibility by doping polydopamine with zinc at a higher temperature. Colloids Surf B Biointer 171:101–9. https://doi.org/10.1016/j.colsurfb.2018.07.014

    Article  CAS  Google Scholar 

  48. Sun Y, Deng Y, Ye Z, Liang S, Tang Z, Wei S (2013) Peptide decorated nano-hydroxyapatite with enhanced bioactivity and osteogenic differentiation via polydopamine coating. Colloids Surf B Biointerfaces 111:107–16. https://doi.org/10.1016/j.colsurfb.2013.05.037

    Article  CAS  PubMed  Google Scholar 

  49. Teixeira BN, Aprile P, Mendonça RH, Kelly DJ, Thiré R (2019) Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J Biomed Mater Res B Appl Biomater 107(1):37–49. https://doi.org/10.1002/jbm.b.34093

    Article  CAS  PubMed  Google Scholar 

  50. Chen Z, Zhang Z, Feng J, Guo Y, Yu Y, Cui J et al (2018) Influence of Mussel-derived bioactive BMP-2-decorated pla on msc behavior in vitro and verification with osteogenicity at ectopic sites in vivo. ACS Appl Mater Interfaces 10(14):11961–71. https://doi.org/10.1021/acsami.8b01547

    Article  CAS  PubMed  Google Scholar 

  51. Guillen-Romero LD, Oropeza-Guzmán MT, López-Maldonado EA, Iglesias AL, Paz-González JA, Ng T et al (2019) Synthetic hydroxyapatite and its use in bioactive coatings. J Appl Biomater Func Mater 17(1):2280800018817463. https://doi.org/10.1177/2280800018817463

    Article  CAS  Google Scholar 

  52. Wang S, Yang Y, Li Y, Shi J, Zhou J, Zhang L et al (2019) Strontium/adiponectin co-decoration modulates the osteogenic activity of nano-morphologic polyetheretherketone implant. Colloids Surf B Biointerf 176:38–46. https://doi.org/10.1016/j.colsurfb.2018.12.056

    Article  CAS  Google Scholar 

  53. Xu X, Li Y, Wang L, Li Y, Pan J, Fu X et al (2019) Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application. Biomaterials 212:98–114. https://doi.org/10.1016/j.biomaterials.2019.05.014

    Article  CAS  PubMed  Google Scholar 

  54. Xu Y, Li H, Wu J, Yang Q, Jiang D, Qiao B (2018) Polydopamine-induced hydroxyapatite coating facilitates hydroxyapatite/polyamide 66 implant osteogenesis: an in vitro and in vivo evaluation. Int J Nanomed 13:8179–93. https://doi.org/10.2147/ijn.S181137

    Article  CAS  Google Scholar 

  55. Liu F, Wang X, Chen T, Zhang N, Wei Q, Tian J et al (2020) Hydroxyapatite/silver electrospun fibers for anti-infection and osteoinduction. J Adv Res 21:91–102. https://doi.org/10.1016/j.jare.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  56. Xue P, Li Q, Li Y, Sun L, Zhang L, Xu Z et al (2017) Surface modification of poly(dimethylsiloxane) with polydopamine and hyaluronic acid to enhance hemocompatibility for potential applications in medical implants or devices. ACS Appl Mater Inter 9(39):33632–33644. https://doi.org/10.1021/acsami.7b10260

    Article  CAS  Google Scholar 

  57. Tan HC, Poh CK, Cai Y, Soe MT, Wang W (2013) Covalently grafted BMP-7 peptide to reduce macrophage/monocyte activity: an in vitro study on cobalt chromium alloy. Biotechnol Bioeng 110(3):969–79. https://doi.org/10.1002/bit.24756

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Y, Chu K, He S, Wang B, Zhu W, Ren F (2020) Fabrication of high strength, antibacterial and biocompatible Ti-5Mo-5Ag alloy for medical and surgical implant applications. Mater Sci Eng C Mater Bio Appl 106:110165. https://doi.org/10.1016/j.msec.2019.110165

    Article  CAS  Google Scholar 

  59. Khan AS, Syed MR (2019) A review of bioceramics-based dental restorative materials. Dental Mater J 38(2):163–76. https://doi.org/10.4012/dmj.2018-039

    Article  CAS  Google Scholar 

  60. Li J, Tan L, Liu X, Cui Z, Yang X, Yeung KWK et al (2017) Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods. ACS nano. 11(11):11250–63. https://doi.org/10.1021/acsnano.7b05620

    Article  CAS  PubMed  Google Scholar 

  61. Rather HA, Jhala D, Vasita R (2019) Dual functional approaches for osteogenesis coupled angiogenesis in bone tissue engineering. Mater Sci Eng C Mater Bio Appl 103:109761. https://doi.org/10.1016/j.msec.2019.109761

    Article  CAS  Google Scholar 

  62. Wang J, Chen Y, Zhou G, Chen Y, Mao C, Yang M. (2019) Polydopamine-Coated Antheraea pernyi (A. pernyi) silk fibroin films promote cell adhesion and wound healing in skin tissue repair. ACS Appl Mater Interfaces. 11(38):34736–43. doi: https://doi.org/10.1021/acsami.9b12643.

  63. Klevens RM, Edwards JR, Richards CL, Jr., Horan TC, Gaynes RP, Pollock DA, et al. (2007) Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public health reports (Washington, DC : 1974). 122(2):160–6. doi: https://doi.org/10.1177/003335490712200205.

  64. Guan M, Chen Y, Wei Y, Song H, Gao C, Cheng H et al (2019) Long-lasting bactericidal activity through selective physical puncture and controlled ions release of polydopamine and silver nanoparticles-loaded TiO(2) nanorods in vitro and in vivo. Int J Nanomed 14:2903–14. https://doi.org/10.2147/ijn.S202625

    Article  CAS  Google Scholar 

  65. Deng Y, Zhou P, Liu X, Wang L, Xiong X, Tang Z et al (2015) Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite. Colloids Surf B Biointerfaces 136:64–73. https://doi.org/10.1016/j.colsurfb.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  66. Xu X, Wang L, Luo Z, Ni Y, Sun H, Gao X et al (2017) Facile and versatile strategy for construction of anti-inflammatory and antibacterial surfaces with polydopamine-mediated liposomes releasing dexamethasone and minocycline for potential implant applications. ACS Appl Mater Interfaces 9(49):43300–14. https://doi.org/10.1021/acsami.7b06295

    Article  CAS  PubMed  Google Scholar 

  67. Song J, Liu H, Lei M, Tan H, Chen Z, Antoshin A et al (2020) Redox-channeling polydopamine-ferrocene (PDA-Fc) coating to confer context-dependent and photothermal antimicrobial activities. ACS Appl Mater Interfaces. 12(7):8915–28. https://doi.org/10.1021/acsami.9b22339

    Article  CAS  PubMed  Google Scholar 

  68. Ciolino JB, Dohlman CH (2009) Biologic keratoprosthesis materials. Int Ophthalmol clin 49(1):1–9. https://doi.org/10.1097/IIO.0b013e3181924904

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tan XW, Lakshminarayanan R, Liu SP, Goh E, Tan D, Beuerman RW et al (2012) Dual functionalization of titanium with vascular endothelial growth factor and β-defensin analog for potential application in keratoprosthesis. J Biomed Mater Res B Appl Biomater. 100(8):2090–100. https://doi.org/10.1002/jbm.b.32774

    Article  CAS  PubMed  Google Scholar 

  70. Salvador-Culla B, Jeong KJ, Kolovou PE, Chiang HH, Chodosh J, Dohlman CH et al (2016) Titanium coating of the boston keratoprosthesis. Trans Vision Sci Technol 5(2):17. https://doi.org/10.1167/tvst.5.2.17

    Article  Google Scholar 

  71. Dinh TN, Hou S, Park S, Shalek BA, Jeong KJ (2018) Gelatin hydrogel combined with polydopamine coating to enhance tissue integration of medical implants. ACS Biomater Sci Eng 4(10):3471–7. https://doi.org/10.1021/acsbiomaterials.8b00886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Eisenberg MJ, Konnyu KJ (2006) Review of randomized clinical trials of drug-eluting stents for the prevention of in-stent restenosis. Am J Cardiol 98(3):375–82. https://doi.org/10.1016/j.amjcard.2006.02.042

    Article  CAS  PubMed  Google Scholar 

  73. Shen W, Cai K, Yang Z, Yan Y, Yang W, Liu P (2012) Improved endothelialization of NiTi alloy by VEGF functionalized nanocoating. Colloids Surf B Biointer 94:347–53. https://doi.org/10.1016/j.colsurfb.2012.02.009

    Article  CAS  Google Scholar 

  74. Chen Z, Li Q, Chen J, Luo R, Maitz MF, Huang N (2016) Immobilization of serum albumin and peptide aptamer for EPC on polydopamine coated titanium surface for enhanced in-situ self-endothelialization. Mater Sci Eng C Mater Bio Appl 60:219–29. https://doi.org/10.1016/j.msec.2015.11.044

    Article  CAS  Google Scholar 

  75. Lee SY, Bae IH, Sung Park D, Jang EJ, Shim JW, Lim KS et al (2016) Prednisolone- and sirolimus-eluting stent: anti-inflammatory approach for inhibiting in-stent restenosis. J Biomater Appl 31(1):36–44. https://doi.org/10.1177/0885328216630498

    Article  CAS  PubMed  Google Scholar 

  76. Getahun H, Matteelli A, Chaisson RE, Raviglione M (2015) Latent mycobacterium tuberculosis infection. New England J Med 372(22):2127–35. https://doi.org/10.1056/NEJMra1405427

    Article  CAS  Google Scholar 

  77. Li L, Xu J, Ma Y, Tang D, Chen Y, Luo F et al (2014) Surgical strategy and management outcomes for adjacent multisegmental spinal tuberculosis: a retrospective study of forty-eight patients. Spine 39(1):E40-8. https://doi.org/10.1097/brs.0000000000000053

    Article  PubMed  Google Scholar 

  78. Li D, Li L, Ma Y, Zhuang Y, Li D, Shen H et al (2017) Dopamine-assisted fixation of drug-loaded polymeric multilayers to osteoarticular implants for tuberculosis therapy. Biomaterials Sci 5(4):730–40. https://doi.org/10.1039/c7bm00042a

    Article  CAS  Google Scholar 

  79. Luetke A, Meyers PA, Lewis I, Juergens H (2014) Osteosarcoma treatment—Where do we stand? A state of the art review. Cancer Treat Rev 40(4):523–32. https://doi.org/10.1016/j.ctrv.2013.11.006

    Article  PubMed  Google Scholar 

  80. Suzuki M, Kato C, Kato A (2015) Therapeutic antibodies: their mechanisms of action and the pathological findings they induce in toxicity studies. J Toxicol Pathol 28(3):133–9. https://doi.org/10.1293/tox.2015-0031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang M, Zhang J, Chen J, Zeng Y, Zhu Z, Wan Y (2019) Fabrication of curcumin-modified TiO(2) nanoarrays via cyclodextrin based polymer functional coatings for osteosarcoma therapy. Adv Healthcare Mater 8(23):e1901031. https://doi.org/10.1002/adhm.201901031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No.2020kfyXGYJ082), National Natural Science Foundation of China (No.81800984) and Natural Science Foundation of Hubei Province (No.2020CFB787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumei Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, C., Yu, R. et al. Application of polydopamine on the implant surface modification. Polym. Bull. 79, 5613–5633 (2022). https://doi.org/10.1007/s00289-021-03793-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03793-9

Keywords

Navigation