Skip to main content
Log in

Recent achievements in sodium alginate-based nanoparticles for targeted drug delivery

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polymeric biomaterials can be used within physiological conditions causing low local or systemic effects. Among the biopolymers, alginate (ALG) is widely used for hemostatic properties and biocompatibility as well as its vast possibilities of chemical modifications for novel properties and nanomedicine generations in medical fields. ALG can create hydrogen bonds through its numerous active hydroxyl and carboxyl groups to form a muco-adhesive polymer, gelation, and transdermal permeation enhancement. ALG nanoparticles (NPs) can be used as drug carriers as they show suitable biocompatibility, biodegradability, and loading capacity. ALG NPs also show low toxicity and can be readily modified by simple reactions through the numerous hydroxyl and carboxyl groups. ALG NPs are commonly used as drug delivery systems because they can form hydrogels for loading natural and chemical agents such as proteins, oligosaccharide, and anticancer drugs. In additions, ALG can be applied via various routes of administration as nasal, intravenous, oral, and ocular. On the other hand, the physicochemical properties of ALG such as mechanical strength, gelation, and cell affinity can be manipulated by combining ALG with the other polymers, chemical, or physical crosslinking and surface alterations using specific targeting moieties. It was reported that targeted delivery can be achieved by modifying NPs using small molecules such as peptides, antibodies, and aptamer. These strategies of targeting NPs not only cause the lower dosage of required drugs, but also lead them binding to their specific receptors. The present review aims to show some features of sodium ALG (NaALG) NPs which are rapidly developing field of nanotechnology and their potential applications in targeted drug delivery. This review presents broad view of NaALG applications, discussing some routine types such as peptide, magnetic, and pH-sensitive conjugated NaALG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Abbreviations

ALG:

Alginates

BSA:

Bovine serum albumin

CS:

Chitosan

CPFX:

Ciprofloxacin

CUR:

Curcumin

DTX:

Docetaxel

DOX:

Doxorubicin

5-FU:

Fluorouracil

FDA:

Food and Drug Administration

GSH:

Glutathione

GO:

Graphene oxide

G:

Guluronic acid

HAP:

Hydroxyapatite

KET:

Ketoprofen

KGM:

Konjac glucomannan

Cys:

l-cysteine

LP:

Laponite®

M:

Mannuronic acid

MPA:

Mercaptopropionic acid

NPs:

Nanoparticles

NMAAm:

N-methylolacrylamide

PCX:

Paclitaxel

PRM:

Protamine sulfate

R6G:

Rhodamine 6G

RBF:

Riboflavin

NaALG:

Sodium alginate

TKPR:

Tuftsin

TNF-α:

Tumor necrosis factor-alpha

VitB12 :

Vitamin B12

References

  1. Peteiro C (2018) Alginate production from marine macroalgae, with emphasis on kelp farming. In: Alginates and Their Biomedical Applications. Springer, pp 27–66

  2. Sari-Chmayssem N, Taha S, Mawlawi H, Guégan J-P, Jeftić J, Benvegnu T (2016) Extracted and depolymerized alginates from brown algae Sargassum vulgare of Lebanese origin: chemical, rheological, and antioxidant properties. J Appl Phycol 28(3):1915–1929

    CAS  Google Scholar 

  3. Maiti S, Kumari L (2016) Smart Nanopolysaccharides for the Delivery of Bioactives. Nanoarchit Smart Deliv Drug Target 67:1–20

    Google Scholar 

  4. Draget KI (2009) Alginates. In: Handbook of hydrocolloids. Elsevier, pp 807–828

  5. Johnson FA, Craig DQM, Mercer AD (1997) Characterization of the block structure and molecular weight of sodium alginates. J Pharm Pharmacol 49(7):639–643. https://doi.org/10.1111/j.2042-7158.1997.tb06085.x

    Article  CAS  PubMed  Google Scholar 

  6. Sarker B, Papageorgiou DG, Silva R, Zehnder T, Gul-E-Noor F, Bertmer M, Kaschta J, Chrissafis K, Detsch R, Boccaccini AR (2014) Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mater Chem B 2(11):1470–1482

    CAS  PubMed  Google Scholar 

  7. Moe S, Draget K, Skjak-Brak G (1995) Alginate/food polysaccharides and their applications. New York

  8. Stender EG, Khan S, Ipsen R, Madsen F, Hägglund P, Abou Hachem M, Almdal K, Westh P, Svensson B (2018) Effect of alginate size, mannuronic/guluronic acid content and pH on particle size, thermodynamics and composition of complexes with β-lactoglobulin. Food Hydrocolloids 75:157–163

    CAS  Google Scholar 

  9. Keweloh H, Heipieper H-J, Rehm H-J (1989) Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Appl Microbiol Biotechnol 31(4):383–389

    CAS  Google Scholar 

  10. Balakrishnan B, Mohanty M, Umashankar P, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26(32):6335–6342

    CAS  PubMed  Google Scholar 

  11. Cole SM, Nelson DL (1993) Alginate wound dressing of good integrity. Google Patents

  12. Venkatesan J, Bhatnagar I, Manivasagan P, Kang K-H, Kim S-K (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    CAS  PubMed  Google Scholar 

  13. Sapir Y, Kryukov O, Cohen S (2011) Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32(7):1838–1847

    CAS  PubMed  Google Scholar 

  14. Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28(6):621–630

    PubMed  Google Scholar 

  15. Sharma S, Khuller G, Garg S (2003) Alginate-based oral drug delivery system for tuberculosis: pharmacokinetics and therapeutic effects. J Antimicrob Chemother 51(4):931–938

    PubMed  Google Scholar 

  16. Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18(8):583–590

    CAS  PubMed  Google Scholar 

  17. Andersen T, Auk-Emblem P, Dornish M (2015) 3D cell culture in alginate hydrogels. Microarrays 4(2):133–161

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33(11):3279–3305

    CAS  PubMed  Google Scholar 

  19. Yang J-S, Xie Y-J, He W (2011) Research progress on chemical modification of alginate: a review. Carbohyd Polym 84(1):33–39

    CAS  Google Scholar 

  20. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Alnaief M, Alzaitoun M, García-González C, Smirnova I (2011) Preparation of biodegradable nanoporous microspherical aerogel based on alginate. Carbohyd Polym 84(3):1011–1018

    CAS  Google Scholar 

  22. Patil SB, Sawant KK (2009) Development, optimization and in vitro evaluation of alginate mucoadhesive microspheres of carvedilol for nasal delivery. J Microencapsul 26(5):432–443

    CAS  PubMed  Google Scholar 

  23. Saravanan M, Rao KP (2010) Pectin–gelatin and alginate–gelatin complex coacervation for controlled drug delivery: Influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules. Carbohyd Polym 80(3):808–816

    CAS  Google Scholar 

  24. Miyazaki S, Kubo W, Attwood D (2000) Oral sustained delivery of theophylline using in-situ gelation of sodium alginate. J Control Release 67(2–3):275–280

    CAS  PubMed  Google Scholar 

  25. Agüero L, Zaldivar-Silva D, Peña L, Dias ML (2017) Alginate microparticles as oral colon drug delivery device: a review. Carbohyd Polym 168:32–43

    Google Scholar 

  26. Zhang B, Yan Y, Shen Q, Ma D, Huang L, Cai X, Tan S (2017) A colon targeted drug delivery system based on alginate modificated graphene oxide for colorectal liver metastasis. Mater Sci Eng, C 79:185–190

    CAS  Google Scholar 

  27. Messaoud GB, Sánchez-González L, Probst L, Desobry S (2016) Influence of internal composition on physicochemical properties of alginate aqueous-core capsules. J Colloid Interface Sci 469:120–128

    PubMed  Google Scholar 

  28. Abd El-Ghaffar M, Hashem M, El-Awady M, Rabie A (2012) pH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohyd Polym 89(2):667–675

    CAS  Google Scholar 

  29. Xia L, Huang H, Fan Z, Hu D, Zhang D, Khan AS, Usman M, Pan L (2019) Hierarchical macro-/meso-/microporous oxygen-doped carbon derived from sodium alginate: A cost-effective biomass material for binder-free supercapacitors. Mater Design 182

  30. Broderick E, Lyons H, Pembroke T, Byrne H, Murray B, Hall M (2006) The characterisation of a novel, covalently modified, amphiphilic alginate derivative, which retains gelling and non-toxic properties. J Colloid Interface Sci 298(1):154–161

    CAS  PubMed  Google Scholar 

  31. Fernando IPS, Lee W, Han EJ, Ahn G (2019) Alginate-based nanomaterials: Fabrication techniques, properties, and applications. Chem Eng J 391

  32. Tonsomboon K, Strange D, Oyen M Gelatin nanofiber-reinforced alginate gel scaffolds for corneal tissue engineering. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), 2013. IEEE, pp 6671–6674

  33. Jeon O, Powell C, Ahmed SM, Alsberg E (2010) Biodegradable, photocrosslinked alginate hydrogels with independently tailorable physical properties and cell adhesivity. Tissue Eng Part A 16(9):2915–2925

    CAS  PubMed  Google Scholar 

  34. Laffleur F, Küppers P (2019) Adhesive alginate for buccal delivery in aphthous stomatitis. Carbohyd Res 477:51–57

    CAS  Google Scholar 

  35. Chia SH, Schumacher BL, Klein TJ, Thonar EJM, Masuda K, Sah RL, Watson D (2004) Tissue-engineered human nasal septal cartilage using the alginate-recovered-chondrocyte method. Laryngoscope 114(1):38–45

    CAS  PubMed  Google Scholar 

  36. Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK (2008) Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm 68(3):513–525

    CAS  PubMed  Google Scholar 

  37. Sandoval-Castilla O, Lobato-Calleros C, García-Galindo H, Alvarez-Ramírez J, Vernon-Carter EJ (2010) Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Res Int 43(1):111–117

    CAS  Google Scholar 

  38. Dalmoro A, Barba AA, Lamberti G, Grassi M, d’Amore M (2012) Pharmaceutical applications of biocompatible polymer blends containing sodium alginate. Adv Polym Technol 31(3):219–230

    CAS  Google Scholar 

  39. Szekalska M, Puciłowska A, Szymańska E, Ciosek P, Winnicka K (2016) Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016:1–17

    Google Scholar 

  40. Aslani P, Kennedy RA (1996) Studies on diffusion in alginate gels I Effect of cross-linking with calcium or zinc ions on diffusion of acetaminophen. J Control Release 42(1):75–82

    CAS  Google Scholar 

  41. Jaya S, Durance T, Wang R (2009) Effect of alginate-pectin composition on drug release characteristics of microcapsules. J Microencapsul 26(2):143–153

    CAS  PubMed  Google Scholar 

  42. Ma X, Dong L, Ji X, Li Q, Gou Y, Fan X, Wang M, Di Y, Deng K (2013) Drug release behaviors of a pH/thermo-responsive porous hydrogel from poly (N-acryloylglycinate) and sodium alginate. J Sol-Gel Sci Technol 68(2):356–362

    CAS  Google Scholar 

  43. Uyen NTT, Hamid ZAA, Tram NXT, Ahmad N (2020) Fabrication of alginate microspheres for drug delivery: a review. Int J Biol Macromol 153:1035–1046

    CAS  PubMed  Google Scholar 

  44. Kikuchi A, Kawabuchi M, Watanabe A, Sugihara M, Sakurai Y, Okano T (1999) Effect of Ca2+-alginate gel dissolution on release of dextran with different molecular weights. J Control Release 58(1):21–28

    CAS  PubMed  Google Scholar 

  45. Kobayashi M, Wood PA, Hrushesky WJ (2002) Circadian chemotherapy for gynecological and genitourinary cancers. Chronobiol Int 19(1):237–251

    CAS  PubMed  Google Scholar 

  46. Minko T, Dharap S, Pakunlu R, Wang Y (2004) Molecular targeting of drug delivery systems to cancer. Curr Drug Targets 5(4):389–406

    CAS  PubMed  Google Scholar 

  47. Taheri A, Dinarvand R, Nouri FS, Khorramizadeh MR, Borougeni AT, Mansoori P, Atyabi F (2011) Use of biotin targeted methotrexate–human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy. Int J Nanomed 6:1863

    CAS  Google Scholar 

  48. Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP (2004) Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 100(1):135–144

    CAS  PubMed  Google Scholar 

  49. Chen S, Zhao X, Chen J, Chen J, Kuznetsova L, Wong SS, Ojima I (2010) Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjugate Chem 21(5):979–987

    Google Scholar 

  50. Dharap SS, Wang Y, Chandna P, Khandare JJ, Qiu B, Gunaseelan S, Sinko P, Stein S, Farmanfarmaian A, Minko T (2005) Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc Natl Acad Sci 102(36):12962–12967

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Saltan N, Kutlu HM, Hür D, İşcan A, Say R (2011) Interaction of cancer cells with magnetic nanoparticles modified by methacrylamido-folic acid. Int J Nanomed 6:477

    CAS  Google Scholar 

  52. Xie J, Shen Z, Li KC, Danthi N (2007) Tumor angiogenic endothelial cell targeting by a novel integrin-targeted nanoparticle. Int J Nanomed 2(3):479

    CAS  Google Scholar 

  53. Ghaffari M, Dehghan G, Abedi-Gaballu F, Kashanian S, Baradaran B, Dolatabadi JEN, Losic D (2018) Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting. Eur J Pharm Sci 122:311–330

    CAS  PubMed  Google Scholar 

  54. Narayanaswamy R, Torchilin VP (2019) Hydrogels and their applications in targeted drug delivery. Molecules 24(3):603

    PubMed Central  Google Scholar 

  55. Garg T, Goyal K, A, (2014) Liposomes: targeted and controlled delivery system. Drug Deliv Lett 4(1):62–71

    CAS  Google Scholar 

  56. Pangburn TO, Petersen MA, Waybrant B, Adil MM, Kokkoli E (2009) Peptide-and aptamer-functionalized nanovectors for targeted delivery of therapeutics. J Biomech Eng 131:7

    Google Scholar 

  57. Montenegro J-M, Grazu V, Sukhanova A, Agarwal S, Jesus M, Nabiev I, Greiner A, Parak WJ (2013) Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv Drug Deliv Rev 65(5):677–688

    CAS  PubMed  Google Scholar 

  58. Severino P, da Silva CF, Andrade LN, de Lima OD, Campos J, Souto EB (2019) Alginate nanoparticles for drug delivery and targeting. Curr Pharm Des 25(11):1312–1334

    CAS  PubMed  Google Scholar 

  59. Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23(11):1418–1423

    CAS  PubMed  Google Scholar 

  60. Wang L, Shelton R, Cooper P, Lawson M, Triffitt J, Barralet J (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24(20):3475–3481

    CAS  PubMed  Google Scholar 

  61. Chen Y, Qi Y, Liu B (2013) Polyacrylic acid functionalized nanographene as a nanocarrier for loading and controlled release of doxorubicin hydrochloride. J Nanomater 2013:16

    Google Scholar 

  62. Aydin R, Pulat M (2012) 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. J Nanomater 2012:42

    Google Scholar 

  63. Lim EK, Huh YM, Yang J, Lee K, Suh JS, Haam S (2011) pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater 23(21):2436–2442

    CAS  PubMed  Google Scholar 

  64. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285

    CAS  PubMed  Google Scholar 

  65. Yuan N-n, Li S-j, Li G-q (2018) Sodium alginate coated mesoporous silica for dual bio-responsive controlled drug delivery. J Drug Deliv Sci Technol 46:348–353

    CAS  Google Scholar 

  66. Motiei M, Kashanian S, Lucia LA, Khazaei M (2017) Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. J Control Release 260:213–225

    CAS  PubMed  Google Scholar 

  67. Motiei M, Kashanian S (2017) Preparation of amphiphilic chitosan nanoparticles for controlled release of hydrophobic drugs. J Nanosci Nanotechnol 17(8):5226–5232

    Google Scholar 

  68. Xie M, Zhang F, Peng H, Zhang Y, Li Y, Xu Y, Xie J (2019) Layer-by-layer modification of magnetic graphene oxide by chitosan and sodium alginate with enhanced dispersibility for targeted drug delivery and photothermal therapy. Colloids Surf, B 176:462–470

    CAS  Google Scholar 

  69. Gao C, Tang F, Zhang J, Lee SM, Wang R (2017) Glutathione-responsive nanoparticles based on a sodium alginate derivative for selective release of doxorubicin in tumor cells. Journal of Materials Chemistry B 5(12):2337–2346

    CAS  PubMed  Google Scholar 

  70. Gao C, Tang F, Gong G, Zhang J, Hoi MP, Lee SM, Wang R (2017) pH-responsive prodrug nanoparticles based on a sodium alginate derivative for selective co-release of doxorubicin and curcumin into tumor cells. Nanoscale 9(34):12533–12542

    CAS  PubMed  Google Scholar 

  71. Feng C, Song R, Sun G, Kong M, Bao Z, Li Y, Cheng X, Cha D, Park H, Chen X (2014) Immobilization of coacervate microcapsules in multilayer sodium alginate beads for efficient oral anticancer drug delivery. Biomacromol 15(3):985–996

    CAS  Google Scholar 

  72. Gonçalves M, Figueira P, Maciel D, Rodrigues J, Qu X, Liu C, Tomás H, Li Y (2014) pH-sensitive Laponite®/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomater 10(1):300–307

    PubMed  Google Scholar 

  73. Guo H, Lai Q, Wang W, Wu Y, Zhang C, Liu Y, Yuan Z (2013) Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy. Int J Pharm 451(1–2):1–11

    CAS  PubMed  Google Scholar 

  74. Fan L, Ge H, Zou S, Xiao Y, Wen H, Li Y, Feng H, Nie M (2016) Sodium alginate conjugated graphene oxide as a new carrier for drug delivery system. Int J Biol Macromol 93:582–590

    CAS  PubMed  Google Scholar 

  75. Wang J, Liu C, Shuai Y, Cui X, Nie L (2014) Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf, B 113:223–229

    CAS  Google Scholar 

  76. Yi Y-M, Yang T-Y, Pan W-M (1999) Preparation and distribution of 5-fluorouracil 125I sodium alginate-bovine serum albumin nanoparticles. World J Gastroenterol 5(1):57

    PubMed  PubMed Central  Google Scholar 

  77. Gupta N, Aggarwal N (2007) Stomach-specific drug delivery of 5-fluorouracil using floating alginate beads. AAPS PharmSciTech 8(2):E143–E149

    PubMed Central  Google Scholar 

  78. Wu C, Li C, Zhang X, Cheng C, Wang J (2019) An alginate-based hydrogel composite obtained by UV radiation and its release of 5-fluorouracil. Polym Bull 76(3):1167–1182

    CAS  Google Scholar 

  79. Kulkarni RV, Boppana R, Mohan GK, Mutalik S, Kalyane NV (2012) pH-responsive interpenetrating network hydrogel beads of poly (acrylamide)-g-carrageenan and sodium alginate for intestinal targeted drug delivery: synthesis, in vitro and in vivo evaluation. J Colloid Interface Sci 367(1):509–517

    CAS  PubMed  Google Scholar 

  80. Motiei M, Kashanian S (2017) Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs. Eur J Pharm Sci 99:285–291

    CAS  PubMed  Google Scholar 

  81. Yuan Y, Xu X, Gong J, Mu R, Li Y, Wu C, Pang J (2019) Fabrication of chitosan-coated konjac glucomannan/sodium alginate/graphene oxide microspheres with enhanced colon-targeted delivery. Int J Biol Macromol 131:209–217

    CAS  PubMed  Google Scholar 

  82. Mao X, Li X, Zhang W, Yuan L, Deng L, Ge L, Mu C, Li D (2019) Development of microspheres based on thiol-modified sodium alginate for intestinal-targeted drug delivery. ACS Appl Bio Mater 2(12):5810–5818

    CAS  PubMed  Google Scholar 

  83. Chiu HI, Ayub AD, Mat Yusuf SNA, Yahaya N, Abd Kadir E, Lim V (2020) Docetaxel-loaded disulfide cross-linked nanoparticles derived from thiolated sodium alginate for colon cancer drug delivery. Pharmaceutics 12(1):38

    CAS  PubMed Central  Google Scholar 

  84. Manatunga DC, de Silva RM, de Silva KN, de Silva N, Bhandari S, Yap YK, Costha NP (2017) pH responsive controlled release of anti-cancer hydrophobic drugs from sodium alginate and hydroxyapatite bi-coated iron oxide nanoparticles. Eur J Pharm Biopharm 117:29–38

    CAS  PubMed  Google Scholar 

  85. Mahdavinia GR, Rahmani Z, Karami S, Pourjavadi A (2014) Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery. J Biomater Sci Polym Ed 25(17):1891–1906

    CAS  PubMed  Google Scholar 

  86. Havemeyer A, Bittner F, Wollers S, Mendel R, Kunze T, Clement B, Havemeyer A, Lang J, Clement B, Wahl B (2012) Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Drug Metab Rev 44(sup1):6–28

    Google Scholar 

  87. Motiei M, Kashanian S, Taherpour A (2017) Hydrophobic amino acids grafted onto chitosan: a novel amphiphilic chitosan nanocarrier for hydrophobic drugs. Drug Dev Ind Pharm 43(1):1–11

    CAS  PubMed  Google Scholar 

  88. Muller RH, Keck CM (2004) Challenges and solutions for the delivery of biotech drugs–a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113(1–3):151–170

    CAS  PubMed  Google Scholar 

  89. Xie M, Zhang F, Liu L, Zhang Y, Li Y, Li H, Xie J (2018) Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl Surf Sci 440:853–860

    CAS  Google Scholar 

  90. Boekhoven J, Zha RH, Tantakitti F, Zhuang E, Zandi R, Newcomb CJ, Stupp SI (2015) Alginate–peptide amphiphile core–shell microparticles as a targeted drug delivery system. RSC Adv 5(12):8753–8756

    CAS  PubMed  Google Scholar 

  91. Long L, Lai M, Mao X, Luo J, Yuan X, Zhang L-M, Ke Z, Yang L, Deng DY (2019) Investigation of vitamin B12-modified amphiphilic sodium alginate derivatives for enhancing the oral delivery efficacy of peptide drugs. Int J Nanomed 14:7743

    CAS  Google Scholar 

  92. Jain S, Amiji M (2012) Tuftsin-modified alginate nanoparticles as a noncondensing macrophage-targeted DNA delivery system. Biomacromol 13(4):1074–1085

    CAS  Google Scholar 

  93. Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C (2018) Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. Int J Hyperth 34(8):1316–1328

    Google Scholar 

  94. Sharifi M, Rezayat SM, Akhtari K, Hasan A, Falahati M (2019) Fabrication and evaluation of anti-cancer efficacy of lactoferrin-coated maghemite and magnetite nanoparticles. J Biomol Struct and Dyn 2019:1–10

    Google Scholar 

  95. Lanier OL, Korotych OI, Monsalve AG, Wable D, Savliwala S, Grooms NW, Nacea C, Tuitt OR, Dobson J (2019) Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Int J Hyperth 36(1):687–701

    Google Scholar 

  96. Albinali KE, Zagho MM, Deng Y, Elzatahry AA (2019) A perspective on magnetic core–shell carriers for responsive and targeted drug delivery systems. Int J Nanomed 14:1707

    CAS  Google Scholar 

  97. Song W, Su X, Gregory DA, Li W, Cai Z, Zhao X (2018) Magnetic alginate/chitosan nanoparticles for targeted delivery of curcumin into human breast cancer cells. Nanomaterials 8(11):907

    PubMed Central  Google Scholar 

  98. Sood A, Arora V, Shah J, Kotnala R, Jain TK (2017) Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Mater Sci Eng, C 80:274–281

    CAS  Google Scholar 

  99. Jardim KV, Palomec-Garfias AF, Andrade BYG, Chaker JA, Báo SN, Márquez-Beltrán C, Moya SE, Parize AL, Sousa MH (2018) Novel magneto-responsive nanoplatforms based on MnFe2O4 nanoparticles layer-by-layer functionalized with chitosan and sodium alginate for magnetic controlled release of curcumin. Mater Sci Eng, C 92:184–195

    CAS  Google Scholar 

  100. Amani S, Mohamadnia Z, Mahdavi A (2019) pH-responsive hybrid magnetic polyelectrolyte complex based on alginate/BSA as efficient nanocarrier for curcumin encapsulation and delivery. Int J Biol Macromol 141:1258–1270

    CAS  PubMed  Google Scholar 

  101. Sudakar C, Dixit A, Regmi R, Naik R, Lawes G, Naik VM, Vaishnava PP, Toti U, Panyam J (2008) Fe $ _ 3 $ O $ _ 4 $ Incorporated AOT-alginate nanoparticles for drug delivery. IEEE Trans Magn 44(11):2800–2803

    CAS  Google Scholar 

  102. Sang G, Bardajee GR, Mirshokraie A, Didehban K (2018) A thermo/pH/magnetic-responsive nanogel based on sodium alginate by modifying magnetic graphene oxide: preparation, characterization, and drug delivery. Iran Polym J 27(3):137–144

    CAS  Google Scholar 

  103. Bardajee GR, Hooshyar Z (2018) Thermo/pH/magnetic-triple sensitive poly (N-isopropylacrylamide-co-2-dimethylaminoethyl) methacrylate)/sodium alginate modified magnetic graphene oxide nanogel for anticancer drug delivery. Polym Bull 75(12):5403–5419

    CAS  Google Scholar 

  104. Hayati M, Rezanejade Bardajee G, Ramezani M, Mizani F (2020) Temperature/pH/magnetic triple sensitive nanogel for doxorubicin anticancer drug delivery. Inorganic Nano-Metal Chem 50(11):1189–1200

    CAS  Google Scholar 

  105. He S, Zhong S, Xu L, Dou Y, Li Z, Qiao F, Gao Y, Cui X (2020) Sonochemical fabrication of magnetic reduction-responsive alginate-based microcapsules for drug delivery. Int J Biol Macromol 155:42–49

    CAS  PubMed  Google Scholar 

  106. Friedman AJ, Phan J, Schairer DO, Champer J, Qin M, Pirouz A, Blecher-Paz K, Oren A, Liu PT, Modlin RL (2013) Antimicrobial and anti-inflammatory activity of chitosan–alginate nanoparticles: a targeted therapy for cutaneous pathogens. J Investig Dermatol 133(5):1231–1239

    CAS  PubMed  Google Scholar 

  107. Marci L, Meloni MC, Maccioni AM, Sinico C, Lai F, Cardia MC (2016) Formulation and characterization studies of trimethyl chitosan/sodium alginate nanoparticles for targeted drug delivery. ChemistrySelect 1(4):669–674

    CAS  Google Scholar 

  108. Kumar S, Bhanjana G, Sharma A, Sidhu M, Dilbaghi N (2014) Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohyd Polym 101:1061–1067

    CAS  Google Scholar 

  109. Manuja A, Kumar S, Dilbaghi N, Bhanjana G, Chopra M, Kaur H, Kumar R, Manuja BK, Singh SK, Yadav SC (2014) Quinapyramine sulfate-loaded sodium alginate nanoparticles show enhanced trypanocidal activity. Nanomedicine 9(11):1625–1634

    CAS  PubMed  Google Scholar 

  110. Praphakar RA, Munusamy MA, Alarfaj AA, Kumar SS, Rajan M (2017) Zn 2+ cross-linked sodium alginate-g-allylamine-mannose polymeric carrier of rifampicin for macrophage targeting tuberculosis nanotherapy. New J Chem 41(19):11324–11334

    CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Elham Rostami has wrote all parts of this review.

Corresponding author

Correspondence to Elham Rostami.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, E. Recent achievements in sodium alginate-based nanoparticles for targeted drug delivery. Polym. Bull. 79, 6885–6904 (2022). https://doi.org/10.1007/s00289-021-03781-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03781-z

Keywords

Navigation