Skip to main content
Log in

Transport mechanism and diffusion kinetics of kerosene through polynorbornene rubber/natural rubber blends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Blends of polynorbornene rubber and natural rubber with varying compositions were made and their swelling behavior in kerosene at 35, 45 and 55 °C were examined by conventional weight-gain method. Transport parameters such as diffusion, permeation and sorption coefficients were estimated for each blend systems, and the data obtained were utilized in the determination of activation energies of diffusion (ED) & permeation (EP) and enthalpy of sorption (ΔHs). Moreover, the kinetics of sorption was also studies and it was found that the transport behavior of blends systems changed from anomalous to Fickian to quasi Fickian diffusion for the penetrating molecules. PB-03 at 35 °C showed perfect Fickian diffusion behavior. Besides this, theoretical modeling of diffusion was carried out which revealed that the experimental data were best satisfied with Peppas-Sahlin model. SEM analysis was also carried out to identify the morphology of the blends. Furthermore, mechanical testing was also performed for unswollen, swollen and deswollen blends samples to evaluate the stability of rubber blends.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Utracki LA (1989) Polymer alloys and blends. Hanser, Munich

    Google Scholar 

  2. Yin B, Li LP, Zhou Y et al (2013) Largely improved impact toughness of PA6/EPDM-g-MA/HDPE ternary blends: the role of core-shell particles formed in melt processing on preventing micro-crack propagation. Polymer (Guildf) 54(7):1938–1947. https://doi.org/10.1016/j.polymer.2013.02.001

    Article  CAS  Google Scholar 

  3. Khimi SR, Pickering KL (2014) A new method to predict optimum cure time of rubber compound using dynamic mechanical analysis. J Appl Polym Sci 131(6):1–6. https://doi.org/10.1002/app.40008

    Article  CAS  Google Scholar 

  4. Jong L (2018) Particle reinforced composites from acrylamide modified blend of styrene-butadiene and natural rubber. Polym Compos 40(2):758–765. https://doi.org/10.1002/pc.24734

    Article  CAS  Google Scholar 

  5. Nik Yahya NZ, Zulkepli NN, Ismail H et al (2013) Natural rubber/styrene butadiene rubber/recycled nitrile glove (NR/SBR/rNBRg) ternary blend: tensile properties & morphology. Adv Environ Biol 7(12):3731–3736

    Google Scholar 

  6. Bohn L (1968) Incompatibility and phase formation in solid polymer mixtures and graft and block copolymers. Rubber Chem Technol 41(2):495–513. https://doi.org/10.5254/1.3547187

    Article  Google Scholar 

  7. Jovanovic´ S, Samarˇzija-Jovanovic´ S, Markovic´ G, et al. (2017) Ternary NR/BR/SBR rubber blend nanocomposites. J Thermoplast Compos Mater 31(2): 265–287. https://doi.org/10.1177/0892705717697778

  8. DR Paul(1976) Ed., Polymer Blends, vol. 11, chapter 12, Academic Press, New York, NY, USA

  9. Lee YM, Bourgeois D, Belfort G (1989) Sorption, diffusion, and pervaporation of organics in polymer membranes. J Memb Sci 44(2–3):161–181. https://doi.org/10.1016/S0376-7388(00)83350-5

    Article  CAS  Google Scholar 

  10. Shin BG et al (2007) Structure and Properties of Polynorbornene Derivatives: Poly(norbornene dicarboxylic acid dialkyl ester)s and Poly(norbornene dimethyl dicarboxylate)s. Macromol Res 15(2):185–190. https://doi.org/10.1007/BF0321877

    Article  CAS  Google Scholar 

  11. Esteruelas MA, Gonzalez F, Herrero J et al (2007) Thermal properties of polynorbornene (cis- and trans-) and hydrogenated polynorbornene. Polym Bull 58(5–6):923–931

    Article  CAS  Google Scholar 

  12. Sakurai K, Takahashi T (1989) Strain-induced crystallization in polynorbornene. J Appl Polym Sci 38(6):1191–1194. https://doi.org/10.1002/app.1989.070380616

    Article  CAS  Google Scholar 

  13. Bogdanova YG, Dolzhikova VD, Gringol’ts ML, et al (2013) The effect of trimethylsilyl substituents in the monomer unit on the energy characteristics of surfaces of polynorbornenes obtained via metathesis polymerization. Polym Sci Ser A 55(8):471–479. https://doi.org/10.1134/S0965545X13080014

    Article  CAS  Google Scholar 

  14. Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos A Appl Sci Manuf 40(11):1661–1672. https://doi.org/10.1016/j.compositesa.2009.08.011

    Article  CAS  Google Scholar 

  15. Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43(1):254–269. https://doi.org/10.1002/app.1993.070470521

    Article  CAS  Google Scholar 

  16. Sakurai K, Kashiwagi T, Takahashi T (1993) Crystal structure of polynorbornene. J Appl Polym Sci. 47(5):937–940. https://doi.org/10.1002/app.1993.070470521

    Article  CAS  Google Scholar 

  17. Inomata K, Nakagawa K, Fukuda C et al (2010) Shape memory behavior of poly(methyl methacrylate)-graft-poly(ethylene glycol) copolymers. Polymer 51(3):793–798. https://doi.org/10.1016/j.polymer.2009.12.021

    Article  CAS  Google Scholar 

  18. Kim BK, Sang YL, Mao X (1996) Polyurethanes having shape memory effects. Polymer 37(96):5781–5793. https://doi.org/10.1016/S0032-3861(96)00442-9

    Article  CAS  Google Scholar 

  19. Sauter T, Heuchel M, Kratz K et al (2013) Quantifying the shape-memory effect of polymers by cyclic thermomechanical tests. Polym Rev 53(1):6–40. https://doi.org/10.1080/15583724.2012.756519

    Article  CAS  Google Scholar 

  20. Zhao X, Niu K, Xu Y et al (2016) Morphology and performance of NR/NBR/ENR ternary rubber composites. Compos B Eng 107:106–112. https://doi.org/10.1016/j.compositesb.2016.09.073

    Article  CAS  Google Scholar 

  21. Yuniari A, Mayasari HE and Setyorini I (2017) Curing characteristics, swelling, and mechanical properties of natural rubber/nitrile butadiene rubber blends with and without compatibilizer. Maj Kulit, Karet, dan Plast 33(2): 65–72. http://dx.doi.org/https://doi.org/10.20543/mkkp.v33i2.3265

  22. Koshy AT, Kuriakose B, Thomas S (1992) Studies on the effect of blend ratio and cure system on the degradation of natural rubber—ethylene-vinyl acetate rubber blends. Polym Degrad Stab 36(2):137–147. https://doi.org/10.1016/0141-3910(92)90150-4

    Article  CAS  Google Scholar 

  23. Koshy AT, Kuriakose B, Thomas S, Varghese S (1993) Studies on the effect of blend ratio and crosslinking system on thermal, X-ray and dynamic mechanical properties of blends of natural rubber and ethylene-vinyl acetate copolymer. Polymer 34(16):3428–3436. https://doi.org/10.1016/0032-3861(93)90472-M

    Article  CAS  Google Scholar 

  24. Koshy AT, Kuriakose B, Thomas S, Varghese S (1994) Viscoelastic properties of silica-filled natural rubber and ethylene-vinyl acetate copolymer blend. Polym Plast Technol Eng 33(2):149–159. https://doi.org/10.1080/03602559408015292

    Article  CAS  Google Scholar 

  25. Jansen P, Soares BG (1996) Effect of compatibilizer and curing system on the thermal degradation of natural rubber/EVA copolymer blends. Polym Degrad Stab 52(1):95–99. https://doi.org/10.1016/0141-3910(95)00238-3

    Article  CAS  Google Scholar 

  26. Jansen P, Gomes AS, Soares BG (1996) The use of EVAcontaining mercapto groups in natural rubber-EVA blends. II. The effect of curing system on mechanical and thermal properties of the blends. J Appl Polym Sci 61(4):591–598

    Article  CAS  Google Scholar 

  27. Asaletha R, Kumaran MG, Thomas S (1998) Transport behaviour of aliphatic hydrocarbons through dynamically crosslinked natural rubber/polystyrene blends. Polym Polym Compos 6(6):357–371

    CAS  Google Scholar 

  28. Johnson T, Thomas S (1999) Natural rubber/epoxidized natural rubber-25 blends: morphology, transport phenomena and mechanical properties. J Mater Sci 34(13):3221–3239. https://doi.org/10.1023/A:1004638024590

    Article  CAS  Google Scholar 

  29. George SC, Groeninckx G, Ninan KN, Thomas S (2008) Molecular transport of aromatic hydrocarbons through nylon-6/ethylene propylene rubber blends: relationship between phase morphology and transport characteristics. J Polym Sci 38(16):2136

    Article  Google Scholar 

  30. George S, Varughese KT, Thomas S (2000) Molecular transport of aromatic solvents in isotactic polypropylene/ acrylonitrile-co-butadiene rubber blends. Polymer 41(2):579–594

    Article  CAS  Google Scholar 

  31. Abu-Abdeen M, Abdel Ghani SA (2001) Swelling and electrical properties of rubber vulcanizates loaded with paraffin wax. J Appl Polym Sci 81:3169–3177. https://doi.org/10.1002/app.1769

    Article  CAS  Google Scholar 

  32. Abu-Abdeen M, Abdalaziz A, Sedky Almulhem A (2008) Mechanical behavior and microhardness of swollen natural rubber loaded with carbon black. J Appl Polym Sci 109(5):3361–3368. https://doi.org/10.1002/app.28382

    Article  CAS  Google Scholar 

  33. Akinlabi AK, Okwu UN, Okieimen FE, Oladoja NA (2006) Thermal aging properties and molecular transport of solvents through vulcanizates prepared from thioglycollic acid modified epoxidized low molecular weight natural rubber blends filled with admixtures of carbon black and carbonized rubber seed shell. Int J Polym Mater Polym Biomater 55(12):1095–1114. https://doi.org/10.1080/00914030600692091

    Article  CAS  Google Scholar 

  34. Jasna VC, Anilkumar T, Mathew G et al (2018) Novel nanocomposites based on chlorinated styrene butadiene rubber and manganous tungstate: focus on curing, mechanical, electrical and solvent transport properties. J Mater Sci 53:9861–9876. https://doi.org/10.1007/s10853-018-2273-9

    Article  CAS  Google Scholar 

  35. Kumari P, Manoj KC, Unnikrishnan G (2009) Influence of carbon black on the fuel transport and mechanical characteristics of natural rubber/ acrylonitrile butadiene rubber blends. Prog Rubber Plast Recycl Technol 25(1):1–28. https://doi.org/10.1177/147776060902500101

    Article  CAS  Google Scholar 

  36. Nihmath A, Ramesan MT (2020) Development of novel elastomeric blends derived from chlorinated nitrile rubber and chlorinated ethylene propylene diene rubber. Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106728

    Article  Google Scholar 

  37. Ismail H, Poh BT, Tan KS, Moorthy M (2003) Effect of filler loading on cure time and swelling behaviour of SMR L/ENR 25 and SMR L/SBR blends. Polym Int 52(5):685–691. https://doi.org/10.1002/pi.1002

    Article  CAS  Google Scholar 

  38. Parris RW, Scott JR (1942) Properties of Hard Rubber. IX. Swelling in Various Liquids. (Part XIII of Swelling of Rubber). Rubber Chemistry and Technology 15 (2): 280–300. https://doi.org/10.5254/1.3546608

  39. Rao RV, Yassen M (1987) Effect of temperature on rates of permeation of chloride ions and water vapour through alkyd coatings. Pigment Resin Technol 7(2):4–8. https://doi.org/10.1108/eb041352

    Article  Google Scholar 

  40. Ruggeri RT, Beck TR (1980) An investigation of the mass transfer characteristics of polyurethane paint. Org Coat Plast Chem 43:580–585

    CAS  Google Scholar 

  41. Koszinowoski J (1986) Diffusion and solubility of n-alkanes in polyolefines. J Appl Polym Sci 32(5):4765–4786. https://doi.org/10.1002/app.1986.070320501

    Article  CAS  Google Scholar 

  42. Berens AR, Hopfenberg HB (1982) Diffusion of organic vapors at low concentrations in glassy PVC, polystyrene, and PMMA. J Membr Sci. https://doi.org/10.1016/S0376-7388(00)81415-5

    Article  Google Scholar 

  43. Hwang ST, Choi CK, Kammermeyer K (1974) Gaseous transfer coefficients in membranes. J Sep Sci 9(6):461–478. https://doi.org/10.1080/00372367408055591

    Article  CAS  Google Scholar 

  44. Robinson JR (1978) Sustained and controlled release of drug delivery systems. Marcel Dekker, New York, NY, USA

    Google Scholar 

  45. Hopffenberg HB, Paul DR (1978) Transport phenomena, polymer blends, vol 1. Academic Press, New York, NY, USA

    Google Scholar 

  46. Kumar N, Bag DS, Singh KP, Dixit A, Mishra S, Tripathi DN, Prasad NE (2020) Self-sealing polymeric materials: Mechanism and Applications. Adv Mater Lett 11(6):1–11. https://doi.org/10.5185/amlett.2020.061521

    Article  CAS  Google Scholar 

  47. Salomon G, Van Amerongen GJ (1947) Influence of structure on polymer-liquid interaction .I. Relative and absolute values of swelling equilibria. J Polym Sci 2:355. https://doi.org/10.1002/pol.1947.120020401

    Article  CAS  Google Scholar 

  48. Whitby GS, EvansPaster- nack ABDS (1942) The influence of chemical structure on the imbibition of liquids by Rubber. Trans Faraday Soc 38:269. https://doi.org/10.1039/TF942380269B

    Article  Google Scholar 

  49. Mostoni S, Milana P, Credico BD, D’Arienzo M, Scotti R (2019) Zinc-based curing activators: new trends for reducing zinc content in rubber vulcanization process. Catalysts 9:664. https://doi.org/10.3390/catal9080664

    Article  CAS  Google Scholar 

  50. Unnikrishnan G, Thomas S (1994) Diffusion and transport of aromatic hydrocarbons through natural rubber. Polymer 35(25):5504–5510. https://doi.org/10.1016/S0032-3861(05)80015-1

    Article  CAS  Google Scholar 

  51. Danwanichakul P, Jaroenkarn S, Jumpathi P, Dechojarassri D (2006) Sorption and desorption of toluene, m-xylene, pcresol and water by natural rubber chips. Songklanakarin. J Sci Technol 28(5):1071–1082

    Google Scholar 

  52. Southern E, Thomas AG (1967) Diffusion of liquids in crosslinked rubbers Part 1. Trans Faraday Soc. 63:1913. https://doi.org/10.1039/TF9676301913

    Article  CAS  Google Scholar 

  53. George SC, Ninan KN, Groeninckx G, Thomas S (2000) Styrene-butadiene rubber/natural rubber blends: morphology, transport behavior, and dynamic mechanical and mechanical properties. J Appl Polym Sci 78:1280–1303

    Article  CAS  Google Scholar 

  54. Qu M, Ma Y, Li C, Shi X (2016) Investigation of the properties of polynorbornene rubber/ EPDM blend. J Elastom Plast 49:1–14. https://doi.org/10.1177/0095244316676867

    Article  CAS  Google Scholar 

  55. Desai AB, Wilkes GL (1974) Solvent-induced crystallization of polyethylene terephthalate. J Polym Sci 46:291–319. https://doi.org/10.1002/polc.5070460123

    Article  CAS  Google Scholar 

  56. Jiji A, Hanna JJM, Soney CG, Nandakumar K, Sabu T (2015) Transport characteristics of organic solvents through carbon nanotube filled styrene butadiene rubber nanocomposites: the influence of rubber–filler interaction, the degree of reinforcement and morphology. Phys Chem Chem Phys 17:11217–11228. https://doi.org/10.1039/C5CP00719D

    Article  Google Scholar 

  57. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639. https://doi.org/10.1016/j.compscitech.2006.07.003

    Article  CAS  Google Scholar 

  58. Crank J (1975) The Mathematics of Diffusion, Oxford Clarendon Press, Oxford, UK, 2nd edition.

  59. Flory PJ (1953) Principles of polymer chemistry. NY, Cornell University Press, Ithaca

    Google Scholar 

  60. Stephen R, Varghese S, Joseph K, Oommen Z, Thomas S (2006) Diffusion and transport through nanocomposites of natural rubber (NR), carboxylated styrene butadiene rubber (XSBR) and their blends. J Membr Sci 282(1–2):162–170. https://doi.org/10.1016/j.memsci.2006.05.019

    Article  CAS  Google Scholar 

  61. Jamnongkan T, Kaewpirom S (2010) Controlled-release fertilizer based on chitosan hydrogel: phosphorus release kinetics. Sci J UBU 1:43–50

    Google Scholar 

  62. Ganji1 F, Farahani SV, Farahani EV (2010) Theoritical description of hydrogel swelling: a review. Iran polym J 19: 375–398

  63. Visakh PM, Thomas S, Oksman K, Mathew AP (2012) Cellulose nanofibres and cellulose nanowhiskers based natural rubber composites: diffusion, sorption, and permeation of aromatic organic solvents. J Appl Polym Sci 124(2):1614–1623. https://doi.org/10.1002/app.35176

    Article  CAS  Google Scholar 

  64. Barrer RM, Barrie JA, Rogers MG (1963) Heterogeneous membranes: Diffusion in filled rubber. J Polym Sci Part A 8:2565–2586. https://doi.org/10.1002/pol.1963.100010806

    Article  Google Scholar 

  65. Mathai AE, Thomas S (1996) Transport of aromatic hydrocarbons through cross-linked nitrile rubber membranes. J Macromol Sci Part B 2:229. https://doi.org/10.1080/00222349608212383

    Article  Google Scholar 

  66. El-tantawy F (2001) Influence of solvent transport on physicochemical properties of crosslinked butyl rubber filled with TiC ceramic. Polym Degrad Stab 73:289–299. https://doi.org/10.1016/S0141-3910(01)00090-8

    Article  CAS  Google Scholar 

  67. Kim D, Caruthers JM, Peppas NA (1993) Penetrant transport in cross-linked polystyrene. Macromolecules 26(8):1841–1847. https://doi.org/10.1021/ma00060a008

    Article  CAS  Google Scholar 

  68. Higuch T (1963) Mechanism of sustained- action medication theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52(12):1145–1149. https://doi.org/10.1002/jps.2600521210

    Article  Google Scholar 

  69. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35. https://doi.org/10.1016/0378-5173(83)90064-9

    Article  CAS  Google Scholar 

  70. Peppas NA, Sahlin JJ (1989) A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm 57:169–172. https://doi.org/10.1016/0378-5173(89)90306-2

    Article  CAS  Google Scholar 

  71. Philip L, Nikolaos R, Peppas AP (1987) A simple equation for description of solute release I Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5(1):23–36. https://doi.org/10.1016/0168-3659(87)90034-4

    Article  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank senior members of rubber and adhesive division of DMSRDE Kanpur, i.e., Mr. Om Prakash Gautam and Mr. Ramprakash for providing continuous helps in each and every part of this investigation. The authors also acknowledge to Dr. (Smt.) Usha Neelam, Principal, Govt. Indira Gandhi Home Science Girls PG College, Shahdol, M.P. for providing encouragement and plethora of time in writing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nand Kumar.

Ethics declarations

Conflict of interest

No conflicts of interest are available for declaration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Singh, K.P., Giri, A. et al. Transport mechanism and diffusion kinetics of kerosene through polynorbornene rubber/natural rubber blends. Polym. Bull. 79, 5305–5325 (2022). https://doi.org/10.1007/s00289-021-03770-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03770-2

Keywords

Navigation