Skip to main content
Log in

Poly(bromoundecyl acrylate) gels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Initial attempts to perform nearly bulk polymerization of bromoundecyl acrylate unexpectedly produced cross-linked gels, GelCH2Cl2 and GelDMF, exhibiting some interesting chemical features. Monomer concentrations were 50% by weight using methylene chloride (CH2Cl2) and dimethylformamide (DMF) as solvents. Thermal initiation was done with AIBN (azobis[isobutyronitrile]), and analysis of GelCH2Cl2 and GelDMF suggests the isobutyronitrile radical participates in both hydrogen and bromine atomic abstraction reactions. A higher cross-linking density was obtained in DMF, 2 mmol cm−3, than in CH2Cl2, 0.6 mmol cm−3, by measuring swelling in toluene and xylene. Differential scanning calorimetry analysis of these gels reveal melting and freezing transitions over − 30 to − 50 °C, similar to non-cross-linked poly(bromoundecyl acrylate), a room-temperature liquid. Thermally driven apparent evolution of bromine from GelDMF was quantified as corresponding to about 27% of the molar-available bromine by using Ag+ potentiometry. These gel materials represent a new class of telechelic gels that can easily be reacted with diverse reagents to make them interfacially compatible with other phases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Scheme 4
Fig. 5
Scheme 5
Fig. 6

Similar content being viewed by others

Data availability

Most data are available in Ms. Li’s MS thesis (see URL provided as caption to manuscript title to download thesis); other data are available on request from the corresponding author.

References

  1. Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448. https://doi.org/10.1016/j.progpolymsci.2008.12.001

    Article  CAS  Google Scholar 

  2. Kohno Y, Saita S, Men Y, Yuan J, Ohno H (2015) Thermoresponsive polyelectrolytes derived from ionic liquids. Polym Chem 6:2163–2178. https://doi.org/10.1039/C4PY01665C

    Article  CAS  Google Scholar 

  3. Cowan MG, Gin DL, Noble D (2016) Poly(ionic liquid)/ionic liquid ion-gels with high “free” ionic liquid content: platform membrane materials for CO2/light gas separations. Acc Chem Res 49:724–732. https://doi.org/10.1021/acs.accounts.5b00547

    Article  CAS  PubMed  Google Scholar 

  4. Qian W, Texter J, Yan F (2017) Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 46:1124–1159. https://doi.org/10.1039/c6cs00620e

    Article  CAS  PubMed  Google Scholar 

  5. Zhang S, Dokko K, Watanabe M (2015) Porous ionic liquids: synthesis and applications. Chem Sci 6:3684–3691. https://doi.org/10.1039/c5sc01374g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xie ZL, Su DS (2015) Ionic liquid based approaches to carbon materials. Eur J Inorg Chem. https://doi.org/10.1002/ejic.201402607

    Article  Google Scholar 

  7. Ajjan FN, Ambrogi M, Tiruye GA, Cordella D, Fernandes AM, Grygiel K, Isik M, Patil N, Porcarelli L, Rocasalbas G, Vendramientto G, Zeglio E, Antonietti M, Detrembleur C, Inganäs O, Jérôme C, Marcilla R, Mecerreyes D, Moreno M, Taton D, Solina N, Yuan J (2017) Innovative polyelectrolytes/poly(ionic liquid)s for energy and the environment. Polym Int 66:1119–1128. https://doi.org/10.1002/pi.5340

    Article  CAS  Google Scholar 

  8. Hou J, Li M, Song Y (2017) Recent advances in colloidal photonic crystal sensors: materials, structures and analysis methods. Nano Today 22:132–144. https://doi.org/10.1016/j.nantod.2018.08.008

    Article  CAS  Google Scholar 

  9. Ma X, Crombez R, Ashaduzzaman Md, Kunitake M, Slater L, Mourey T, Texter J (2011) Polymer dewetting via stimuli responsive structural relaxation: contact angle analysis. Chem Commun 47:10356–10358. https://doi.org/10.1039/C1CC12656C

    Article  CAS  Google Scholar 

  10. Texter J, Arjunan Vasantha V, Maniglia R, Slater L, Mourey T (2012) Triblock copolymer based on poly(propylene oxide) and poly(1-[11-acryloyloxyundecyl]-3-methyl-imidazolium bromide). Macromol Rapid Commun 33:69–74. https://doi.org/10.1002/marc.201100586

    Article  CAS  PubMed  Google Scholar 

  11. Suckow M, Zschoche S, Heinrich G, Voit B, Boehme F (2016) New reactive poly(ionic liquid)s synthesized by polymer analogous conversion of maleic anhydride containing polymers. Polymer 96:20–25. https://doi.org/10.1016/j.polymer.2016.05.002

    Article  CAS  Google Scholar 

  12. Sha X, Sheng X, Zhou Y, Wang B, Liu Y, Bao J (2019) High catalytic performance of mesoporous dual Br∅nstead acidic ternary poly(ionic liquids) for Friedel-Crafts alkylation. Appl Organomet Chem 33:e5180. https://doi.org/10.1002/aoc.5180

    Article  CAS  Google Scholar 

  13. Nykaza JR, Ye Y, Elabd YA (2014) Synthesis of long side-chain polymerized ionic liquid deblock copolymers with high ion conductivity, Paper POLY-690, 247th ACS National Meeting & Exposition, Dallas, TX, March 16–20

  14. Nykaza JR, Ye Y, Elabd YA (2014) Polymerized ionic liquid diblock copolymers with long alkyl side-chain length. Polymer 55:3360–3369. https://doi.org/10.1016/j.polymer.2014.04.003

    Article  CAS  Google Scholar 

  15. Buback M, Kowollik C (1999) Termination kinetics in free-radical bulk copolymerization: the systems dodecyl acrylate-dodecyl methacrylate and dodecyl acrylate-methyl acrylate. Macromolecules 32:1445–1452. https://doi.org/10.1021/ma971748d

    Article  CAS  Google Scholar 

  16. Marszalek J, Pojman JA, Page KA (2008) Neutron scattering study of the structural change induced by photopolymerization of AOT/D2O/dodecyl acrylate inverse microemulsions. Langmuir 24:13694–13700. https://doi.org/10.1021/la8022634

    Article  CAS  PubMed  Google Scholar 

  17. Jang J, Kim BS (2000) Studies of crosslinked styrene–alkyl acrylate copolymers for oil absorbency application. II. Effects of polymerization conditions on oil absorbency. J Appl Polym Sci 77:914–920. https://doi.org/10.1007/s00289-011-0517-9

    Article  CAS  Google Scholar 

  18. Atta AM, Arndt K-F (2005) Swelling and network parameters of high oil-absorptive network based on 1-octene and isodecyl acrylate copolymers. J Appl Polym Sci 97:80–91. https://doi.org/10.1002/app.21735

    Article  CAS  Google Scholar 

  19. Ghosh P, Karmakar G, Dax M, Das T (2013) Synthesis and characterization of homopolymer of acrylate of mixed alcohols (decyl, dodecyl, and myristyl alcohol): a potential pour point depressant for lubricating oils. Petrol Sci Technol 31:1513–1521. https://doi.org/10.1080/10916466.2010.543722

    Article  CAS  Google Scholar 

  20. Nasser RM, Ahmed NS, Nassa AM (2015) Terpolymers for modifying the performance properties of engine oil. Appl Petrochem Res 5:61–69. https://doi.org/10.1007/s13203-014-0091-9

    Article  CAS  Google Scholar 

  21. Bertini F, Audisio G, Zuev VV (2005) Investigation on the thermal degradation of poly-n-alkyl acrylates and poly-n-akyl methacrylates (C1–C12). Polym Degrad Stability 89:233–239. https://doi.org/10.1016/j.polymdegradstab.2004.11.023

    Article  CAS  Google Scholar 

  22. Stebler C, Despont M, Chang THP, Lee KY, Rishton SA (1996) Microcolumn based low energy e-beam writing. Microelec Eng 30:45–48. https://doi.org/10.1016/0167-9317(95)00191-3

    Article  CAS  Google Scholar 

  23. Kraut J, Hiesgen R, Ge L, Texter J (2007) Blowing bubbles in PMMA with the SEM. Polym Prepr 48:520–521

    CAS  Google Scholar 

  24. Glebov LS, Shuikin AN, Kliger GA (1994) Heterogeneous catalytic transformation of isobutyl benzoate by the inverse Tishchenko reaction. Russ Chem Bull 43:1417–1419. https://doi.org/10.1007/BF00703709

    Article  Google Scholar 

  25. Ding ZY, Alkonis JJ, Salovey R (1991) Model filled polymers. VI. Determination of the crosslink density of polymeric beads by swelling. J Polym Sci B Polym Phys 29:1035–1038. https://doi.org/10.1002/polb.1991.090290815

    Article  CAS  Google Scholar 

  26. Zhang J, Hu CP (2008) Synthesis, characterization and mechanical properties of polyester-based aliphatic polyurethane elastomers containing hyperbranched polyester segments. Eur Polym J 44:3708–3714. https://doi.org/10.1016/j.eurpolymj.2008.08.019

    Article  CAS  Google Scholar 

  27. Gundert F, Wolf BA (1989) Polymer-solvent interaction parameters. In: Brandruo J, Immergut EH (eds) Polymer handbook. John Wiley, New York, pp VII173–VII203

    Google Scholar 

  28. Solvent Polarity Table, Miller’s Home, https://sites.google.com/site/miller00828/in/solvent-polarity-table, accessed 1 August 2020

  29. Matador Rubber (2007) Rubber chemistry, https://www.coursehero.com/file/22626441/rubber-chemistry/, accessed 7 August 2020

  30. Tsubota T, Hirabayashi O, Ida S, Nagaoka S, Nagata M, Matsumoto Y (2002) Reactivity of the hydrogen atoms on diamond surface with various radical initiators in mild condition. Diam Rel Mater 11:1360–1365. https://doi.org/10.1016/S0925-9635(01)00742-7

    Article  CAS  Google Scholar 

  31. Okaya T, Suzuki A, Kikuchi K (2002) Effect of initiators on grafting in the initial stage of the emulsion polymerization of methyl methacrylate using poly(vinyl alcohol) as a protective colloid. Coll Polym Sci 280:188–192. https://doi.org/10.1007/s00396-001-0604-9

    Article  CAS  Google Scholar 

  32. Contrella ND, Tillman ES, Leasure JG, Monk IW, Contrella ND (2009) Synthesis of polystyrene-block-poly(methyl at the junction: sequential anionic and controlled radical polymerization from a single carbon. Macromol Chem Phys 210:2167–2173. https://doi.org/10.1002/macp.200900398

    Article  CAS  Google Scholar 

  33. Butcher WE, Tillman ES (2011) Hydrogen abstraction followed by nitroxide-mediated polymerization: synthesis of 2,7-dibromofluorene-labeled polystyrene. Macromol Chem Phys 212:2224–2233. https://doi.org/10.1002/macp.201100291

    Article  CAS  Google Scholar 

  34. Zeng H, Lu D, Gong Y (2017) Direct metal-free C–H functionalization of cyclic ethers with Schiff bases through an azobisisobutyronitrile-initiated radical chain process. Eur J Org Chem. https://doi.org/10.1002/ejoc.201701288

    Article  Google Scholar 

  35. Dziczkowski J, Dudipalab V, Soucek MD (2012) Grafting sites of acrylic mixed monomers onto unsaturated fatty acids: part 2. Prog Org Coat 73:308–320. https://doi.org/10.1016/j.porgcoat.2010.12.006

    Article  CAS  Google Scholar 

  36. Wang Q, Soucek MD (2019) The investigation of butyl acrylate grafting using model alkyds. J Coat Technol Res 16:221–233. https://doi.org/10.1007/s11998-018-0140-x

    Article  CAS  Google Scholar 

  37. Pearson RE, Martin JC (1963) The mechanism of benzylic bromination with N-bromosuccinimide. J Am Chem Soc 85:355–356. https://doi.org/10.1021/ja00886a029

    Article  Google Scholar 

  38. Lagercrantz C (1993) Spin trapping of nitric oxide (NO·) as aminoxyl radicals by its reaction with two species of short- lived radicals derived from AZO compounds such as 2,2′-azobisisobutyronitrile and some aliphatic alcohols. Free Rad Res Comms 19:387–395. https://doi.org/10.3109/10715769309056528

    Article  CAS  Google Scholar 

  39. Minisci F, Fontana F, Pianese G, Yan YM (1993) Polar effects in free-radical reactions. Homolytic heteroaromatic substitutions by alkyl bromides. J Org Chem 58:4207–4211. https://doi.org/10.1021/jo00068a013

    Article  CAS  Google Scholar 

  40. Zhang Y, Pan M, Liu C, Huang J (2008) Preparation of amphiphilic ternary block copolymers with PEO as the middle block and the effect of PEO position on the glass transition temperature (Tg) of copolymers. J Polym Sci A Polym Chem 46:2624–2631. https://doi.org/10.1002/pola.22592

    Article  CAS  Google Scholar 

  41. Van Zee NJ, Nicolay R (2020) Vitrimers: permanently crosslinked polymers with dynamic network topology. Prog Polym Sci 104:101233. https://doi.org/10.1016/j.progpolymsci.2020.101233

    Article  CAS  Google Scholar 

  42. Khonakdar HA, Morshedian J, Mehrabzadeh M, Wagenknecht U (2003) Jafari SH (2003) Thermal and shrinkage behaviour of stretched peroxide-crosslinked high-density polyethylene. Eur Polym J 39:1729–1734. https://doi.org/10.1016/S0014-3057(03)00076-4

    Article  CAS  Google Scholar 

  43. Ashenhurst J (2014) Alkyl halide reaction map and summary, in Master Organic Chemistry. https://www.masterorganicchemistry.com/2014/01/10/reactions-of-alkyl-halides/. Accessed 27 Aug 2020

Download references

Funding

This work was supported by the School of Engineering and by the Department of Chemistry, Eastern Michigan University.

Author information

Authors and Affiliations

Authors

Contributions

SL executed the experimental work (except NMR). HL contributed NMR measurements and organic reaction mechanism depictions and discussion. JT conceived of this project and supervised Ms. Li. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to John Texter.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1678 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Lindsay, H. & Texter, J. Poly(bromoundecyl acrylate) gels. Polym. Bull. 79, 5825–5842 (2022). https://doi.org/10.1007/s00289-021-03768-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03768-w

Navigation