Skip to main content
Log in

Environmentally friendly polymeric films based on biocarbon, synthetic zeolite and PVP for agricultural chemistry

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

An investigation was made into polymeric films based on polyvinylpyrrolidone (PVP) as the matrix, in combination with synthetic zeolite and dried or pyrolyzed biocarbon (biochar). The films were prepared by the casting method, and their properties were variously analysed (optical microscopy, FTIR analysis, differential scanning calorimetry, mechanical properties, water solubility, water uptake). Evaluation also encompassed the biological decomposition of the films in the soil environment and their influence on the growth of Sinapis alba. Optical microscopy indicated the particles of the fillers were almost completely evenly distributed in the polymer matrix, therein forming networks randomly. Since the space between the particles decreased as particle content increased, raising the content of the fillers brought about more compact networks. The IR spectra for the films proved the occurrence of hydrogen bonding between the PVP and synthetic zeolite. The processing and mechanical properties of the prepared polymeric films were acceptable. Water solubility and the water uptake of the films were satisfactory regarding handling and further use. Respirometric tests indicated a positive effect by the biocarbon on the biodegradation of the tested films. The proposed combination of synthetic zeolite and biocarbon fillers positively influenced the germination rate of Sinapis alba, while the polymer matrix (PVP) did not hinder further growth. Observations and testing led to the conclusion that the materials based on PVP with fillers (synthetic zeolite/biocarbon) have the potential for agricultural utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Phil Trans R Soc B 364(1526):2115–2126. https://doi.org/10.1098/rstb.2008.0311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  CAS  Google Scholar 

  3. Jawaid M, Sapuan SM, Alothman OY (eds) (2016) Green biocomposites: manufacturing and properties. Springer, Berlin. https://doi.org/10.1007/978-3-319-46610-1

    Book  Google Scholar 

  4. Mohanty JR, Das SN, Das HC, Swain SK (2014) Effect of chemically modified date palm leaf fiber on mechanical, thermal and rheological properties of polyvinylpyrrolidone. Fiber Polym 15(5):1062–1070. https://doi.org/10.1007/s12221-014-1062-6

    Article  CAS  Google Scholar 

  5. Nešić A, Ružić J, Gordić M, Ostojić S, Micić D, Onjia A (2017) Pectin-polyvinylpyrrolidone films: a sustainable approach to the development of biobased packaging materials. Compos Part B-Eng 110:56–61. https://doi.org/10.1016/j.compositesb.2016.11.016

    Article  CAS  Google Scholar 

  6. Acton QA (2013) Polyvinyls-advances in research and application. Scholarly Editions, Georgia

  7. O’Haire T, Russell SJ, Carr ChM (2016) Centrifugal melt spinning of polyvinylpyrrolidone (PVP)/triacontene copolymer fibres. J Mater Sci 51(16):7512–7522. https://doi.org/10.1007/s10853-016-0030-5

    Article  CAS  Google Scholar 

  8. Vieira MGA, Silva MA, Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263. https://doi.org/10.1016/j.eurpolymj.2010.22.011

    Article  CAS  Google Scholar 

  9. Arfat YA (2017) Plasticizers for biopolymer films. In: Ahmed J (ed) Glass transition and phase transitions in food and biological materials. John Wiley, Chichester, p 2017

    Google Scholar 

  10. Roy N, Saha N, Kitano T, Saha P (2012) Biodegradation of PVP-CMC hydrogel film: a useful food packaging material. Carbohydr Polym 89(2):346–353. https://doi.org/10.1016/j.carbpol.2012.03.008

    Article  CAS  PubMed  Google Scholar 

  11. Chapi S, Devendrappa H (2016) Optical, electrical, thermal and electrochemical studies of spin-coated polyblend-ZnO nanocomposites. J Mater Sci: Mater Electron 27:11974–11985. https://doi.org/10.1007/s10854-016-5344-1

    Article  CAS  Google Scholar 

  12. Mohamed AM, Osman MH, Smaoui H, Ariffin MAM (2017) Permeability and tensile strength of concrete with arabic gum biopolymer. Adv Civ Eng 2017:1–7. https://doi.org/10.1155/2017/4703841

    Article  Google Scholar 

  13. Allison PG, Moser RD, Chandler MQ, Caminero-Rodriguez JA, Torres-Cancel K, Rivera OG, Goodwin JR, Gore ER, Weiss CA (2015) Mechanical, thermal, and microstructural analysis of polyvinyl alcohol/montmorillonite nanocomposites. J Nanomater 2015:9. https://doi.org/10.1155/2015/291248

    Article  CAS  Google Scholar 

  14. Babaladimath G, Chapi S (2018) Microwave-assisted synthesis, characterization of electrical conducting and electrochemical xanthan gum-graft-polyaniline. J Mater Sci: Mater Electron 29:11159–11166. https://doi.org/10.1007/s10854-018-9201-2

    Article  CAS  Google Scholar 

  15. Chapi S (2020) Optical, electrical and electrochemical properties of PCL5/ITO transparent conductive films deposited by spin-coating-Materials for single-layer devices. J Sci-Adv Mater Dev 5(3):322–329. https://doi.org/10.1016/j.jsamd.2020.07.005

    Article  Google Scholar 

  16. Chapi S (2021) Influence of Co2+ on the structure, conductivity, and electrochemical stability of poly(ethylene oxide)-based solid polymer electrolytes: energy storage devices. J Elec Mater 50:1558–1571. https://doi.org/10.1007/s11664-020-08706-6

    Article  CAS  Google Scholar 

  17. Rodriguez-Castellanos W, Rodrigue D (2016) Production and characterization of hybrid polymer composites based on natural fibers. In: Poletto M (ed) Composites from renewable and sustainable materials. Rijeka, Intech, pp 273–302. https://doi.org/10.5772/64995

    Chapter  Google Scholar 

  18. Alver E, Metin AU, Ciftci H (2014) Synthesis and characterization of chitosan/polyvinylpyrrolidone/zeolite composite by solution blending method. J Inorg Organomet Polym 24:1048–1054. https://doi.org/10.1007/s10904-014-0087-z

    Article  CAS  Google Scholar 

  19. Zhang Q, Cai H, Yang K, Yi W (2017) Study of the preparation and properties of biochar/ plastic composites. Results Phys 7:2391–2395. https://doi.org/10.1016/j.rinp.2017.04.025

    Article  Google Scholar 

  20. Behazin E, Misra M, Mohanty AK (2017) Sustainable biocarbon from pyrolyzed perennial grasses and their effects on impact modified polypropylene biocomposites. Compos Part B-Eng 118:116–124. https://doi.org/10.1021/acsomega.7b00122

    Article  CAS  Google Scholar 

  21. Mashouf Roudsari G, Misra M, Mohanty AK (2017) A statistical approach to develop biocomposites from epoxy resin, poly(furfuryl alcohol), poly(propylene carbonate), and biochar. J Appl Polym Sci 134(38):45307. https://doi.org/10.1002/app.45307

    Article  CAS  Google Scholar 

  22. Nan N, DeVallance DB, Xie X, Wang J (2016) The effect of bio-carbon addition on the electrical, mechanical, and thermal properties of polyvinyl alcohol/biochar composites. J Compos Mater 50(9):1161–1168. https://doi.org/10.1177/0021998315589770

    Article  CAS  Google Scholar 

  23. Das O, Bhattacharyya D, Hui D, Lau KT (2016) Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Compos Part B-Eng 106:120–128. https://doi.org/10.1016/j.compositesb.2016.09.020

    Article  CAS  Google Scholar 

  24. Giorcelli M, Bartoli M (2019) Development of coffee biochar filler for the production of electrical conductive reinforced plastic. Polymers 11(12):1916. https://doi.org/10.3390/polym11121916

    Article  CAS  PubMed Central  Google Scholar 

  25. Raya-Moreno I, Cañizares R, Domene X (2017) Comparing current chemical methods to assess biochar organic carbon in a Mediterranean agricultural soil amended with two different biochars. Sci Total Environ 598:604–615. https://doi.org/10.1016/j.scitotenv.2017.03.168

    Article  CAS  PubMed  Google Scholar 

  26. Uzoma K, Inoue M, Andry H, Fujimaki H, Zahoor A (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manage 27:205–212. https://doi.org/10.1111/j.1475-2743.2011.00340.x

    Article  Google Scholar 

  27. Chen S, Ming Y, Chuang B, Susu Y, Yifei J, Hongtao Z, Yulong Z (2018) Preparation and characterization of slow-release fertilizer encapsulated by biochar-based waterborne copolymers. Sci Total Environ 615:431–437. https://doi.org/10.1016/j.scitotenv.2017.09.209

    Article  CAS  PubMed  Google Scholar 

  28. Jurča M, Julinová M, Slavík R (2019) Negative effect of clay fillers on the polyvinyl alcohol biodegradation. Sci Eng Compos Mater 26(1):97–103. https://doi.org/10.1515/secm-2017-0202

    Article  CAS  Google Scholar 

  29. Asaithambi B, Ganesan GS, Kumar SA (2017) Banana/sisal fibers reinforced poly(lactic acid) hybrid biocomposites; influence of chemical modification of BSF towards thermal properties. Polym Compos 38(6):1053–1062. https://doi.org/10.1002/pc.23668

    Article  CAS  Google Scholar 

  30. Wanderson F, Ribeiro M, Ryan L, Kotzebue V (2017) Thermal and mechanical analyses of biocomposites from cardanol-based polybenzoxazine and bamboo fibers. J Therm Anal Calorim 129:281–289. https://doi.org/10.1007/s10973-017-6191-x

    Article  CAS  Google Scholar 

  31. Baba BO, Ozmen U (2015) Preparation and mechanical characterization of chicken feather/PLA composites. Polym Compos 38(5):837–845. https://doi.org/10.1002/pc.23644

    Article  CAS  Google Scholar 

  32. Baba BO, Ozmen U (2017) Thermal characterization of chicken feather/PLA biocomposites. J Therm Anal Calorim 129:347–355. https://doi.org/10.1007/s10973-017-6188-5

    Article  CAS  Google Scholar 

  33. Reddy TRK, Rao TS, Suvarna RP, Kumar MA (2013) Prediction on tensile properties of cow dung powder filled glass-polyester hybrid composites. IEEE Conf Ser 2013:702–705

  34. Eze U, Ishidi E, Uche C, Madufor I (2016) Effect of maleic anhydride graft-polyethylene (MAPE) on mechanical properties of cow dung and poultry dung filled low density polyethylene (LDPE) composites. Int J Innov Environ Stud Res 4(1):19–27

    Google Scholar 

  35. Yusefi M, Khalid M, Yasin FM, Abdullah LC, Ketabchi MR, Walvekar R (2018) Performance of cow dung reinforced biodegradable poly (lactic acid) biocomposites for structural applications. J Polym Environ 26(2):474–486. https://doi.org/10.1007/s10924-017-0963-z

    Article  CAS  Google Scholar 

  36. Dixit S (2014) Degradation analysis of lignocellulosic fillers infused coir epoxy composites in different environmental conditions. Int J Lignocellul Prod 1(2):160–179. https://doi.org/10.22069/IJLP.2014.2073

    Article  Google Scholar 

  37. Raghuwanshi S, Negi H, Aggarwal T (2015) Comparative biodegradation studies of cow dung modified epoxy with epoxy using an indigenously developed bacterial consortium. Afr J Microbiol Res 9(24):1558–1572. https://doi.org/10.5897/AJMR2015.7462

    Article  CAS  Google Scholar 

  38. Khalid M, Ratnam CT, Abdullah LC, Walvekar R, Ching YC, Ketbchi MR (2016) Mechanical and physical performance of cow dung-based polypropylene biocomposites. Polym Compos 39(1):288–296. https://doi.org/10.1002/pc.23928

    Article  CAS  Google Scholar 

  39. Roy K, Akhtar A, Schclev SD, Hsu M (2017) Development and characterization of novel biochar-mortar composite utilizing waste derived pyrolysis biochar. Int J Sci Eng Res 8(12):1912–1919

    Google Scholar 

  40. ISO 15705 (2002) Water quality – Determination of the chemical oxygen demand – Small-scale dealer-tube method

  41. Julinová M, Slavík R, Vyoralová M, Kalendová A, Alexy P (2018) Utilization of waste lignin and hydrolysate from chromium tanned waste in blends of hot-melt extruded PVA-starch. J Polym Environ 26(4):1459–1472. https://doi.org/10.1007/s10924-017-1050-1

    Article  CAS  Google Scholar 

  42. Costa P, Lobo JMS (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13(2):123–133. https://doi.org/10.1016/S0928-0987(01)00095-1

    Article  CAS  PubMed  Google Scholar 

  43. Julinová M, Kupec J, Alexy P, Hoffmann J, Sedlařík V, Vojtek T, Chromčáková J, Bugaj P (2010) Lignin and starch as potential inductors for biodegradation of films based on poly (vinyl alcohol) and protein hydrolysate. Polym Degrad Stab 95(2):225–233. https://doi.org/10.1016/j.polymdegradstab.2009.10.008

    Article  CAS  Google Scholar 

  44. ISO 11269–2 (2013) Soil quality – Determination of the effects of pollutants on soil flora – Part 2: Effects of chemicals on the emergence and growth of higher plants

  45. Tripathi S, Bhadouria R, Srivastava P, Devi RS, Chaturvedi R, Raghubanshi AS (2020) Effects of light availability on leaf attributes and seedling growth of four tree species in tropical dry forest. Ecol Process 9(1):1–16. https://doi.org/10.1186/s13717-019-0206-4

    Article  CAS  Google Scholar 

  46. Naskar MK, Kundu D, Chatterjee M (2011) Influence of PVP buffer layer on the formation of NaA zeolite membrane. J Porous Mater 18(3):319–327. https://doi.org/10.1007/s10934-010-9381-5

    Article  CAS  Google Scholar 

  47. Sionkowska A (2003) Interaction of collagen and poly (vinyl pyrrolidone) in blends. Eur Polym J 39(11):2135–2140. https://doi.org/10.1016/S0014-3057(03)00161-7

    Article  CAS  Google Scholar 

  48. Liu Y, Yan C, Zhao J, Zhang Z, Wang H, Zhou S, Wu L (2018) Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water. J Clean Prod 202:11–22. https://doi.org/10.1016/j.jclepro.2018.08.128

    Article  CAS  Google Scholar 

  49. Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428. https://doi.org/10.1016/j.biortech.2011.11.084

    Article  CAS  PubMed  Google Scholar 

  50. Nagarajan V, Mohanty AK, Misra M (2016) Biocomposites with size-fractionated biocarbon: influence of the microstructure on macroscopic properties. ACS Omega 1(4):636–647. https://doi.org/10.1021/acsomega.6b00175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mahmoudi Beram F, Koohmareh GA, Malekpour A (2019) Preparation and characterization of aqueous stable electro-spun nanofibers using polyvinyl alcohol/polyvinyl pyrrolidone/zeolite. Soft Mater 17(1):41–56. https://doi.org/10.1080/1539445X.2018.1546191

    Article  CAS  Google Scholar 

  52. Saroj AL, Singh RK, Chandra S (2013) Studies on polymer electrolyte poly (vinyl) pyrrolidone (PVP) complexed with ionic liquid: effect of complexation on thermal stability, conductivity and relaxation behaviour. Mater Sci Eng B 178(4):231–238. https://doi.org/10.1016/j.mseb.2012.11.007

    Article  CAS  Google Scholar 

  53. Wypych G (2011) Handbook of polymers. Chem Tec Publishing, Canada, p 2011

    Google Scholar 

  54. Bennet GM (2016) Seed inoculation, coating and precision pelleting: science technology and practical applications. CRC Press, USA

    Google Scholar 

  55. Meena RS, Das A, Yadav GS, Lal R (2018) Legumes for soil health and sustainable management. Springer, India

    Book  Google Scholar 

  56. Huang WJ (2017) Engineering applications of biochar. InTech, Croatia

    Book  Google Scholar 

  57. Zhao H, Wu L, Chai T, Zhang Y, Tan J, Ma S (2012) The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. J Plant Physiol 169:1243–1252. https://doi.org/10.1016/j.jplph.2012.04.016

    Article  CAS  PubMed  Google Scholar 

  58. Marschner’s MP (2012) Mineral nutrition of higher plants. Elsevier, Australia

    Google Scholar 

Download references

Acknowledgements

This research was supported by internal grants from the Tomas Bata University in Zlin no. IGA/FT/2020/009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markéta Julinová.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaňharová, L., Julinová, M., Jurča, M. et al. Environmentally friendly polymeric films based on biocarbon, synthetic zeolite and PVP for agricultural chemistry. Polym. Bull. 79, 4971–4998 (2022). https://doi.org/10.1007/s00289-021-03765-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03765-z

Keywords

Navigation