Skip to main content
Log in

Effect of organoclays on mechanical properties of glass fiber-reinforced epoxy nanocomposite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Effect of organoclays on the mechanical properties of glass-epoxy nanocomposites at 2 wt% filler loading has been reported. Organoclays were dispersed by ultrasonication method and nanocomposites were fabricated using hand layup technique. X-ray diffraction, scanning electron microscopy, tensile and flexural tests were conducted to evaluate mechanical properties of nanocomposites as per ASTM standards. The experimental results showed that void content was found to be in the control limit. The d-spacing between the clay platelets was increased significantly. G-E + NC-III nanocomposite showed 13% and 29% improvement in ultimate tensile strength and flexural strength, respectively, when compared with G-E + NC-00 composite. Fractured surface of the G-E + NC-III nanocomposite depicted the extensively uneven, very rough, coarse and residue of epoxy. Very clean, deeper shear lip and significant resin/fiber cracking, microvoids, nanoclay agglomeration were observed in G-E + NC-00 and G-E + NC-V composites, respectively. Overall, performance of nanocomposites was increased by the addition of organoclay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kaw AK (2006) Mechanics of composite materials, 2nd edn. Taylor & Francis Group LLC, Boca Raton

    Google Scholar 

  2. Sachse S, Gendre L, Silva F et al (2013) On nanoparticles release from polymer nanocomposites for applications in lightweight automotive components. In: 3rd International conference safe prod use nanomater nanosafe 2012, vol 429, pp 1–7. https://doi.org/10.1088/1742-6596/429/1/012046

  3. Zhao Q, Bahadur S (1999) The mechanism of filler action and the criterion of filler selection for reducing wear. Wear 225–229:660–668. https://doi.org/10.1016/S0043-1648(99)00023-X

    Article  Google Scholar 

  4. Mallick PK (2008) Fibre-reinforced composites materials, manufacturing and design, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  5. Karbhari VM (2013) Non destructive elaluation (NDE) of polymer matrix composites, 1st edn. Woodhead Publishing, Davis Hall

    Book  Google Scholar 

  6. Wang M, Fan X, Thitsartarn W, He C (2015) Rheological and mechanical properties of epoxy/clay nanocomposites with enhanced tensile and fracture toughnesses. Polymer (Guildf) 58:43–52. https://doi.org/10.1016/j.polymer.2014.12.042

    Article  CAS  Google Scholar 

  7. Agubra V, Owuor P, Hosur M (2013) Influence of nanoclay dispersion methods on the mechanical behavior of E-glass/epoxy nanocomposites. Nanomaterials 3:550–563. https://doi.org/10.3390/nano3030550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vijayan PP, Puglia D, Pionteck J et al (2015) Liquid-rubber-modified epoxy/clay nanocomposites: effect of dispersion methods on morphology and ultimate properties. Polym Bull 72:1703–1722. https://doi.org/10.1007/s00289-015-1365-9

    Article  CAS  Google Scholar 

  9. Vo VS, Nguyen VH, Mahouche-Chergui S et al (2017) From atomistic structure to thermodynamics and mechanical properties of epoxy/clay nanocomposites: investigation by molecular dynamics simulations. Comput Mater Sci 139:191–201. https://doi.org/10.1016/j.commatsci.2017.07.024

    Article  CAS  Google Scholar 

  10. Vo VS, Nguyen VH, Mahouche-Chergui S et al (2018) Estimation of effective elastic properties of polymer/clay nanocomposites: a parametric study. Compos Part B Eng 152:139–150. https://doi.org/10.1016/j.compositesb.2018.06.018

    Article  CAS  Google Scholar 

  11. Jumahat A, Soutis C, Mahmud J, Ahmad N (2012) Compressive properties of nanoclay/epoxy nanocomposites. Procedia Eng 41:1607–1613. https://doi.org/10.1016/j.proeng.2012.07.357

    Article  CAS  Google Scholar 

  12. Mirzadeh A, Lafleur PG, Kamal MR, Dubois C (2012) The effects of nanoclay dispersion levels and processing parameters on the dynamic vulcanization of TPV nanocomposites based on PP/EPDM prepared by reactive extrusion. Polym Eng Sci 52:1099–1110. https://doi.org/10.1002/pen.22178

    Article  CAS  Google Scholar 

  13. Rafiq A, Merah N (2019) Nanoclay enhancement of flexural properties and water uptake resistance of glass fiber-reinforced epoxy composites at different temperatures. J Compos Mater 53:143–154. https://doi.org/10.1177/0021998318781220

    Article  CAS  Google Scholar 

  14. Albdiry MT, Yousif BF, Ku H, Lau KT (2013) A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites. J Compos Mater 47:1093–1115. https://doi.org/10.1177/0021998312445592

    Article  Google Scholar 

  15. Azeez AA, Rhee KY, Park SJ, Hui D (2013) Epoxy clay nanocomposites -Processing, properties and applications: a review. Compos Part B Eng 45:308–320. https://doi.org/10.1016/j.compositesb.2012.04.012

    Article  CAS  Google Scholar 

  16. Bindu Sharmila TK, Ayswarya EP, Abraham BT et al (2014) Fabrication of partially exfoliated and disordered intercalated cloisite epoxy nanocomposites via in situ polymerization: mechanical, dynamic mechanical, thermal and barrier properties. Appl Clay Sci 102:220–230. https://doi.org/10.1016/j.clay.2014.09.043

    Article  CAS  Google Scholar 

  17. Umer R, Li Y, Dong Y et al (2015) The effect of graphene oxide (GO) nanoparticles on the processing of epoxy/glass fiber composites using resin infusion. Int J Adv Manuf Technol 81:2183–2192. https://doi.org/10.1007/s00170-015-7427-1

    Article  Google Scholar 

  18. Dehghan A, Salimi A, Zohuriaan-Mehr MJ (2019) The ultrasonic-assisted synthesis of tetrafunctional acrylated epoxy clay nanocomposite. Polym Bull 76:5197–5211. https://doi.org/10.1007/s00289-018-2647-9

    Article  CAS  Google Scholar 

  19. Dean K, Krstina J, Tian W, Varley RJ (2007) Effect of ultrasonic dispersion methods on thermal and mechanical properties of organoclay epoxy nanocomposites. Macromol Mater Eng 292:415–427. https://doi.org/10.1002/mame.200600435

    Article  CAS  Google Scholar 

  20. Lin LY, Lee JH, Hong CE et al (2006) Preparation and characterization of layered silicate/glass fiber/epoxy hybrid nanocomposites via vacuum-assisted resin transfer molding (VARTM). Compos Sci Technol 66:2116–2125. https://doi.org/10.1016/j.compscitech.2005.12.025

    Article  CAS  Google Scholar 

  21. Carrado KA (2000) Synthetic organo- and polymer-clays: preparation, characterization, and materials applications. Appl Clay Sci 17:1–23. https://doi.org/10.1016/S0169-1317(00)00005-3

    Article  CAS  Google Scholar 

  22. Kusmono AM, Ishak Z (2013) Effect of clay addition on mechanical properties of unsaturated polyester/glass fiber composites. Int J Polym Sci 2013:10–17. https://doi.org/10.1155/2013/797109

    Article  CAS  Google Scholar 

  23. Rafiq A, Al-Qadhi M, Merah N, Ali Y (2014) Mechanical behavior of hybrid glass fibre/epoxy clay nanocomposites. Adv Mater Res 894:336–341https://doi.org/10.4028/www.scientific.net/AMR.894.336

    Article  Google Scholar 

  24. Megahed AAEW, Megahed M (2017) Fabrication and characterization of functionally graded nanoclay/glass fiber/epoxy hybrid nanocomposite laminates. Iran Polym J (English Ed) 26:673–680. https://doi.org/10.1007/s13726-017-0552-y

  25. Chanra J, Budianto E, Soegijono B (2019) Surface modification of montmorillonite by the use of organic cations via conventional ion exchange method. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/509/1/012057

    Article  Google Scholar 

  26. Chrissafis K, Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? part I: an overview on thermal decomposition of addition polymers. Thermochim Acta 523:1–24. https://doi.org/10.1016/j.tca.2011.06.010

    Article  CAS  Google Scholar 

  27. Xidas PI, Triantafyllidis KS (2010) Effect of the type of alkylammonium ion clay modifier on the structure and thermal/mechanical properties of glassy and rubbery epoxy-clay nanocomposites. Eur Polym J 46:404–417. https://doi.org/10.1016/j.eurpolymj.2009.11.004

    Article  CAS  Google Scholar 

  28. Pavlacky E, Webster DC (2013) Polymer/clay nanocomposite plasticization: elucidating the influence of quaternary alkylammonium organic modifiers. J Appl Polym Sci 129:324–333. https://doi.org/10.1002/app.38732

    Article  CAS  Google Scholar 

  29. Jeyakumar R, Sampath PS, Ramamoorthi R, Ramakrishnan T (2017) Structural, morphological and mechanical behaviour of glass fibre reinforced epoxy nanoclay composites. Int J Adv Manuf Technol 93:527–535. https://doi.org/10.1007/s00170-017-0565-x

    Article  Google Scholar 

  30. Bilotti E, Fischer HR, Peijs T (2008) Polymer nanocomposites based on needle-like sepiolite clays: effect of functionalized polymers on the dispersion of nanofiller, crystallinity, and mechanical properties E. J Appl Polym Sci 107:1116–1123. https://doi.org/10.1002/app.25395

    Article  CAS  Google Scholar 

  31. Chan M, Lau K, Wong T et al (2011) Mechanism of reinforcement in a nanoclay/polymer composite. Compos Part B 42:1708–1712. https://doi.org/10.1016/j.compositesb.2011.03.011

    Article  CAS  Google Scholar 

  32. Nakas GI, Kaynak C (2009) Use of different alkylammonium salts in clay surface modification for epoxy-based nanocomposites. Polym Compos 30:357–363

    Article  CAS  Google Scholar 

  33. Verge P, Fouquet T, Barrére C et al (2013) Organomodification of sepiolite clay using bio-sourced surfactants: compatibilization and dispersion into epoxy thermosets for properties enhancement. Compos Sci Technol 79:126–132. https://doi.org/10.1016/j.compscitech.2013.02.019

    Article  CAS  Google Scholar 

  34. Annappa AR, Basavarajappa S, Ashoka HN (2014) Effect of soapstone filler on dry sliding wear behaviour of fiber reinforced polymeric composite. Int J Plast Technol. https://doi.org/10.1007/s12588-014-9062-3

    Article  Google Scholar 

  35. Olivier P, Cottu JP, Ferret B (1995) Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates. Composites 26:509–515. https://doi.org/10.1016/0010-4361(95)96808-J

    Article  CAS  Google Scholar 

  36. Thomason JL (1995) The interface region in glass fibre-reinforced epoxy resin composites: 1. Sample preparation, void content and interfacial strength. Composites 26:467–475. https://doi.org/10.1016/0010-4361(95)96804-F

    Article  CAS  Google Scholar 

  37. Mehdikhani M, Gorbatikh L, Verpoest I, Lomov SV (2019) Voids in fiber-reinforced polymer composites: a review on their formation, characteristics, and effects on mechanical performance. J Compos Mater 53:1579–1669. https://doi.org/10.1177/0021998318772152

    Article  CAS  Google Scholar 

  38. Guo ZS, Liu L, Zhang BM, Du S (2009) Critical void content for thermoset composite laminates. J Compos Mater 43:1775–1790. https://doi.org/10.1177/0021998306065289

    Article  CAS  Google Scholar 

  39. Mahale AD, Rebenfeld L (1992) Quantitative measurement of voids formed during liquid impregnation of nonwoven multifilament glass networks using an optical visualization technique. Polym Eng Sci 32:319–326. https://doi.org/10.1002/pen.760320504

    Article  CAS  Google Scholar 

  40. Patel N, Rohatgi V, Lee LJ (1995) Micro scale flow behavior and void formation mechanism during impregnation through a unidirectional stitched fiberglass mat. Polym Eng Sci 35:837–851. https://doi.org/10.1002/pen.760351006

    Article  CAS  Google Scholar 

  41. Yoonessi M, Toghiani H, Kingery WL, Pittman CU (2004) Preparation, characterization, and properties of exfoliated/delaminated organically modified clay/dicyclopentadiene resin nanocomposites. Macromolecules 37:2511–2518. https://doi.org/10.1021/ma0359483

    Article  CAS  Google Scholar 

  42. Zade SK, Suresh Babu V, Sai Srinadh KV (2018) Effect of nanoclay, glass fiber volume and orientation on tensile strength of epoxy-glass composite and optimization using Taguchi method. World J Eng 15(2):312–320. https://doi.org/10.1108/WJE-08-2017-0286

    Article  CAS  Google Scholar 

  43. Sathishkumar TP, Satheeshkumar S, Naveen J (2014) Glass fiber-reinforced polymer composites-a review. J Reinf Plast Compos 33:1258–1275. https://doi.org/10.1177/0731684414530790

    Article  CAS  Google Scholar 

  44. Hamidi YK, Aktas L, Altan MC (2008) Effect of nanoclay content on void morphology in resin transfer molded composites. J Thermoplast Compos Mater 21:141–163. https://doi.org/10.1177/0892705707083635

    Article  CAS  Google Scholar 

  45. Quantg T, Nguyen DGB (2006) Preparation of polymer-clay nanocomposites and their properties. Adv Polym Technol 25:271–285. https://doi.org/10.1002/adv.20079

    Article  CAS  Google Scholar 

  46. Leite IF, Soares APS, Carvalho LH et al (2010) Characterization of pristine and purified organobentonites. J Therm Anal Calorim 100:563–569. https://doi.org/10.1007/s10973-009-0265-3

    Article  CAS  Google Scholar 

  47. Zanetti M, Camino G, Thomann R, Mülhaupt R (2001) Synthesis and thermal behaviour of layered silicate-EVA nanocomposites. Polymer (Guildf) 42:4501–4507. https://doi.org/10.1016/S0032-3861(00)00775-8

    Article  CAS  Google Scholar 

  48. Olivares-Maldonado Y, Ramírez-Vargas E, Sánchez-Valdés S, Ramos-DeValle LF, Rodriguez-Fernandez OS, Espinoza-Martínez AB, Medellín-Rodríguez FJ, Lozano-Ramirez T (2014) Effect of organoclay structure characteristics on properties of ternary PP-EP/EVA/Nanoclay blend systems. Polym Compos 35:2241–2250. https://doi.org/10.1002/pc.22889

    Article  CAS  Google Scholar 

  49. Kint DPR, Seeley G, Gio-Batta M, Burgess AN (2005) Structure and properties of epoxy-based layered silicate nanocomposites. J Macromol Sci Phys 44B:1021–1040. https://doi.org/10.1080/00222340500323656

    Article  CAS  Google Scholar 

  50. Brown JM, Curliss D, Vaia RA (2000) Thermoset-layered silicate nanocomposites. Quaternary ammonium montmorillonite with primary diamine cured epoxies. Chem Mater 12:3376–3384

    Article  CAS  Google Scholar 

  51. Usuki A, Hasegawa N, Kato M, Kobayashi S (2005) Polymer-clay nanocomposites. Inorganic polymeric nanocomposites and membranes. Advances in Polymer Science, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b104481

    Chapter  Google Scholar 

  52. Becker O, Simon GP (2005) Epoxy layered silicate nanocomposites. Adv Polym Sci 179:29–82. https://doi.org/10.1007/b107204

    Article  CAS  Google Scholar 

  53. Ngo T-D, Ton-That M-T, Hoa SV, Cole KC (2008) Reinforcing effect of organoclay in rubbery and glassy epoxy resins, part 1: dispersion and properties T.-D. J Appl Polym Sci 107:1154–1162. https://doi.org/10.1002/app.26641

    Article  CAS  Google Scholar 

  54. Parija S, Nayak SK, Verma SK, Tripathy SS (2004) Studies on physico-mechanical properties and thermal characteristics of polypropylene/layered silicate nanocomposites. Polym Compos 25:646–652. https://doi.org/10.1002/pc.20059

    Article  CAS  Google Scholar 

  55. Kashfipour MA, Mehra N, Zhu J (2018) A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv Compos Hybrid Mater 1:415–439. https://doi.org/10.1007/s42114-018-0022-9

    Article  Google Scholar 

  56. Ray D, Sengupta S, Sengupta SP et al (2006) Preparation and properties of vinylester resin/clay nanocomposites. Macromol Mater Eng 291:1513–1520. https://doi.org/10.1002/mame.200600289

    Article  CAS  Google Scholar 

  57. Shah D, Maiti P, Gunn E et al (2004) Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv Mater 16:1173–1177. https://doi.org/10.1002/adma.200306355

    Article  CAS  Google Scholar 

  58. Kim Y, White JL (2005) Formation of polymer nanocomposites with various organoclays. J Appl Polym Sci 96:1888–1896. https://doi.org/10.1002/app.21581

    Article  CAS  Google Scholar 

  59. Alamri H, Low IM, Alothman Z (2012) Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos Part B Eng 43:2762–2771. https://doi.org/10.1016/j.compositesb.2012.04.037

    Article  CAS  Google Scholar 

  60. Manfredi LB, De Santis H, Vázquez A (2008) Influence of the addition of montmorillonite to the matrix of unidirectional glass fibre/epoxy composites on their mechanical and water absorption properties. Compos Part A Appl Sci Manuf 39:1726–1731. https://doi.org/10.1016/j.compositesa.2008.07.016

    Article  CAS  Google Scholar 

  61. Mohanty S, Nayak SK (2007) Effect of clay exfoliation and organic modification on morphological, dynamic mechanical, and thermal behavior of melt-compounded polyamide-6 nanocomposites. Polym Compos 28:153–162. https://doi.org/10.1002/pc.20284

    Article  CAS  Google Scholar 

  62. Norkhairunnisa M, Azhar AB, Shyang CW (2007) Effects of organo-montmorillonite on the mechanical and morphological properties of epoxy/glass fiber composites. Polym Int 56:512–517. https://doi.org/10.1002/pi.2146

    Article  CAS  Google Scholar 

  63. Xu Y, Van HS (2008) Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos Sci Technol 68:854–861. https://doi.org/10.1016/j.compscitech.2007.08.013

    Article  CAS  Google Scholar 

  64. Bashar MT, Mertiny P (2014) Mechanical and mode-I fracture properties of epoxy-clay nanocomposites prepared by ultrasonic dispersion method. Int J Mater Sci Eng 2:87–92. https://doi.org/10.12720/ijmse.2.2.87-92

    Article  Google Scholar 

  65. Salam H, Dong Y, Davies IJ, Pramanik A (2016) The effects of material formulation and manufacturing process on mechanical and thermal properties of epoxy/clay nanocomposites. Int J Adv Manuf Technol 87:1999–2012. https://doi.org/10.1007/s00170-016-8572-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Annappa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annappa, A.R., Basavarajappa, S. & Davim, J.P. Effect of organoclays on mechanical properties of glass fiber-reinforced epoxy nanocomposite. Polym. Bull. 79, 5085–5103 (2022). https://doi.org/10.1007/s00289-021-03759-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03759-x

Keywords

Navigation