Skip to main content
Log in

Influence of free and microencapsulated oregano oil on starch and poly (butylene co-terephthalate adipate) active film properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The objective of this work was to produce thermoplastic starch (TPS) and poly (butylene co-terephthalate adipate) (PBAT) incorporated with free and microencapsulated oregano essential oil (OEO) by blown extrusion and compare their properties. The OEO was microencapsulated by spray drying using arabic gum and maltodextrin as wall materials. The films were characterized in terms of physical, optical, morphological, thermal and antioxidant properties, and the OEO diffusion coefficient was determined in different food simulants. Regarding water vapor permeability (2.04–2.05 × 10−7 g m−1 Pa−1 h−1) and water solubility (6.25–9.65%), no significant difference (p > 0.05) was observed. Morphological images revealed that films with OEO microparticles (FM) showed greater roughness that caused a reduction in tensile strength, Young's modulus and elongation. FM film showed better thermal stability, significant concentration of phenolic compounds (3.6 mg EGA gfilm−1) and antioxidant capacity, and higher diffusion coefficient in ethanol 10% (aqueous food simulant, 1.3109 × 10–11 cm2 s−1) and 95% (non-aqueous food simulant, 39.8623 × 10–11 cm2 s−1). The results demonstrate the use potential of microencapsulated OEO in the development of biodegradable antioxidant films for food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Data and material available if necessary.

References

  1. Gómez-Estaca J, López-de-Dicastillo C, Hernández-Muñoz P et al (2014) Advances in antioxidant active food packaging. Trends Food Sci Technol 35:42–51. https://doi.org/10.1016/j.tifs.2013.10.008

    Article  CAS  Google Scholar 

  2. Riaz A, Lei S, Akhtar HMS et al (2018) Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int J Biol Macromol 114:547–555. https://doi.org/10.1016/j.ijbiomac.2018.03.126

    Article  CAS  PubMed  Google Scholar 

  3. De Conto D, dos Santos V, Zattera AJ, Santana RMC (2020) Swelling of biodegradable polymers for the production of nanocapsules and films with the incorporation of essential oils. Polym Bull. https://doi.org/10.1007/s00289-020-03465-0

    Article  Google Scholar 

  4. Bonfanti C, Iannì R, Mazzaglia A et al (2012) Emerging cultivation of oregano in Sicily: sensory evaluation of plants and chemical composition of essential oils. Ind Crops Prod 35:160–165. https://doi.org/10.1016/j.indcrop.2011.06.029

    Article  CAS  Google Scholar 

  5. Solano ACV, de Gante CR (2012) Two different processes to obtain antimicrobial packaging containing natural oils. Food Bioprocess Technol 5:2522–2528. https://doi.org/10.1007/s11947-011-0626-3

    Article  CAS  Google Scholar 

  6. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  PubMed  Google Scholar 

  7. Castilho PC, Savluchinske-Feio S, Weinhold TS, Gouveia SC (2012) Evaluation of the antimicrobial and antioxidant activities of essential oils, extracts and their main components from oregano from Madeira Island, Portugal. Food Control 23:552–558. https://doi.org/10.1016/j.foodcont.2011.08.031

    Article  CAS  Google Scholar 

  8. Ribeiro-Santos R, Andrade M, Sanches-Silva A, de Melo NR (2018) Essential oils for food application: natural substances with established biological activities. Food Bioprocess Technol 11:43–71. https://doi.org/10.1007/s11947-017-1948-6

    Article  CAS  Google Scholar 

  9. Ruiz-Navajas Y, Viuda-Martos M, Sendra E et al (2013) In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control 30:386–392. https://doi.org/10.1016/j.foodcont.2012.07.052

    Article  CAS  Google Scholar 

  10. Ribeiro-Santos R, Andrade M, Sanches-Silva A (2017) Application of encapsulated essential oils as antimicrobial agents in food packaging. Curr Opin Food Sci 14:78–84. https://doi.org/10.1016/j.cofs.2017.01.012

    Article  Google Scholar 

  11. Frascareli EC, Silva VM, Tonon RV, Hubinger MD (2012) Determination of critical storage conditions of coffee oil microcapsules by coupling water sorption isotherms and glass transition temperature. Int J Food Sci Technol 47:1044–1054. https://doi.org/10.1111/j.1365-2621.2012.02939.x

    Article  CAS  Google Scholar 

  12. Gharsallaoui A, Roudaut G, Chambin O et al (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40:1107–1121. https://doi.org/10.1016/j.foodres.2007.07.004

    Article  CAS  Google Scholar 

  13. Ré MI (1998) Microencapsulation by spray drying. Dry Technol 16:1195–1236

    Article  Google Scholar 

  14. de Campos SS, de Oliveira A, Moreira TFM et al (2019) TPCS/PBAT blown extruded films added with curcumin as a technological approach for active packaging materials. Food Packag Shelf Life 22:100424. https://doi.org/10.1016/j.fpsl.2019.100424

    Article  Google Scholar 

  15. Olivato JB, Grossmann MVE, Yamashita F et al (2012) Citric acid and maleic anhydride as compatibilizers in starch/poly(butylene adipate-co-terephthalate) blends by one-step reactive extrusion. Carbohydr Polym 87:2614–2618. https://doi.org/10.1016/j.carbpol.2011.11.035

    Article  CAS  Google Scholar 

  16. da Silva TBV, Moreira TFM, de Oliveira A et al (2019) Araucaria angustifolia (Bertol.) Kuntze extract as a source of phenolic compounds in TPS/PBAT active films. Food Funct 10:7697–7706. https://doi.org/10.1039/C9FO01315F

    Article  CAS  Google Scholar 

  17. Zhai X, Wang W, Zhang H et al (2020) Effects of high starch content on the physicochemical properties of starch/PBAT nanocomposite films prepared by extrusion blowing. Carbohydr Polym 239:116231. https://doi.org/10.1016/j.carbpol.2020.116231

    Article  CAS  PubMed  Google Scholar 

  18. Cruz-Tirado JP, Barros Ferreira RS, Lizárraga E et al (2020) Bioactive Andean sweet potato starch-based foam incorporated with oregano or thyme essential oil. Food Packag Shelf Life 23:100457. https://doi.org/10.1016/j.fpsl.2019.100457

    Article  Google Scholar 

  19. de Espíndol Sobczyk A, Luchese CL, Faccin DJL, Tessaro IC (2021) Influence of replacing oregano essential oil by ground oregano leaves on chitosan/alginate-based dressings properties. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2021.03.084

    Article  PubMed  Google Scholar 

  20. de Medeiros JAS, Blick AP, Galindo MV et al (2019) Incorporation of oregano essential oil microcapsules in starch-poly (butylene adipate co-terephthalate) (PBAT) films. Macromol Symp 383:1–7. https://doi.org/10.1002/masy.201800052

    Article  CAS  Google Scholar 

  21. dos Santos PI, Galindo MV, de Medeiros JAS et al (2019) Comparative study of the properties of soy protein concentrate films containing free and encapsulated oregano essential oil. Food Packag Shelf Life 22:100419. https://doi.org/10.1016/j.fpsl.2019.100419

    Article  Google Scholar 

  22. de Souza KC, Correa LG, da Silva TBV et al (2020) Soy protein isolate films incorporated with Pinhão (Araucaria angustifolia (Bertol.) Kuntze) extract for potential use as edible oil active packaging. Food Bioprocess Technol 13:998–1008. https://doi.org/10.1007/s11947-020-02454-5

    Article  CAS  Google Scholar 

  23. ASTM (2001) Standard test methods for tensile properties of thin plastic sheeting D882-00. In: Annual book of ASTM. American Society for Testing and Materials, Philadelphia, PA

  24. Gontard N, Guilbert S, Cuq J-L (1993) Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. J Food Sci 58:206–211. https://doi.org/10.1111/j.1365-2621.1993.tb03246.x

    Article  CAS  Google Scholar 

  25. ASTM (2000) Standard test methods for water vapor transmission of materials ASTM E96 - 00. In: Annual book of ASTM. American Society for Testing and Materials, Philadelphia, PA

  26. Ke J, Xiao L, Yu G et al (2019) The study of diffusion kinetics of cinnamaldehyde from corn starch-based film into food simulant and physical properties of antibacterial polymer film. Int J Biol Macromol 125:642–650. https://doi.org/10.1016/j.ijbiomac.2018.12.094

    Article  CAS  PubMed  Google Scholar 

  27. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  28. Mensor LL, Menezes FS, Leitão GG et al (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phyther Res 15:127–130

    Article  CAS  Google Scholar 

  29. Thaipong K, Boonprakob U, Crosby K et al (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675. https://doi.org/10.1016/j.jfca.2006.01.003

    Article  CAS  Google Scholar 

  30. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  31. Fernandes RVDB, Borges SV, Botrel DA (2014) Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr Polym 101:524–532. https://doi.org/10.1016/j.carbpol.2013.09.083

    Article  CAS  PubMed  Google Scholar 

  32. Toledo Hijo AAC, Da Costa JMG, Silva EK et al (2015) Physical and thermal properties of oregano (Origanum vulgare L.) essential oil microparticles. J Food Process Eng 38:1–10. https://doi.org/10.1111/jfpe.12120

    Article  CAS  Google Scholar 

  33. Sittipummongkol K, Chuysinuan P, Techasakul S et al (2019) Core shell microcapsules of neem seed oil extract containing azadirachtin and biodegradable polymers and their release characteristics. Polym Bull 76:3803–3817. https://doi.org/10.1007/s00289-018-2456-1

    Article  CAS  Google Scholar 

  34. Teodoro RAR, de Barros Fernandes RV, Botrel DA et al (2014) Characterization of microencapsulated rosemary essential oil and its antimicrobial effect on fresh dough. Food Bioprocess Technol 7:2560–2569. https://doi.org/10.1007/s11947-014-1302-1

    Article  CAS  Google Scholar 

  35. da Silva JBA, Santana JS, de Almeida LA et al (2019) PBAT/TPS-nanowhiskers blends preparation and application as food packaging. J Appl Polym Sci 136:1–10. https://doi.org/10.1002/app.47699

    Article  CAS  Google Scholar 

  36. Garcia PS, Baron AM, Yamashita F et al (2018) Compatibilization of starch/poly(butylene adipate-co-terephthalate) blown films using itaconic acid and sodium hypophosphite. J Appl Polym Sci 135:14–19. https://doi.org/10.1002/app.46629

    Article  CAS  Google Scholar 

  37. Orsuwan A, Sothornvit R (2018) Active banana flour nanocomposite films incorporated with garlic essential oil as multifunctional packaging material for food application. Food Bioprocess Technol 11:1199–1210. https://doi.org/10.1007/s11947-018-2089-2

    Article  CAS  Google Scholar 

  38. Cardoso LG, Pereira Santos JC, Camilloto GP et al (2017) Development of active films poly (butylene adipate co-terephthalate)—PBAT incorporated with oregano essential oil and application in fish fillet preservation. Ind Crops Prod 108:388–397. https://doi.org/10.1016/j.indcrop.2017.06.058

    Article  CAS  Google Scholar 

  39. Pelissari FM, Grossmann MVE, Yamashita F, Pineda EAG (2009) Antimicrobial, mechanical, and barrier properties of cassava starch−chitosan films incorporated with oregano essential oil. J Agric Food Chem 57:7499–7504. https://doi.org/10.1021/jf9002363

    Article  CAS  PubMed  Google Scholar 

  40. Ratanakamnuan U, Aht-Ong D (2006) Photobiodegradation of low-density polyethylene/banana starch films. J Appl Polym Sci 100:2725–2736. https://doi.org/10.1002/app.23048

    Article  CAS  Google Scholar 

  41. Andrade-Molina TPC, Shirai MA, Grossmann MVE, Yamashita F (2013) Active biodegradable packaging for fresh pasta. LWT Food Sci Technol 54:25–29. https://doi.org/10.1016/j.lwt.2013.05.011

    Article  CAS  Google Scholar 

  42. Rivero S, Giannuzzi L, García MA, Pinotti A (2013) Controlled delivery of propionic acid from chitosan films for pastry dough conservation. J Food Eng 116:524–531. https://doi.org/10.1016/j.jfoodeng.2012.12.025

    Article  CAS  Google Scholar 

  43. Sousa GM, Yamashita F, Soares Júnior MS (2016) Application of biodegradable films made from rice flour, poly(butylene adipate-co-terphthalate), glycerol and potassium sorbate in the preservation of fresh food pastas. LWT Food Sci Technol 65:39–45. https://doi.org/10.1016/j.lwt.2015.07.054

    Article  CAS  Google Scholar 

  44. Malmir S, Montero B, Rico M et al (2018) Effects of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) microparticles on morphological, mechanical, thermal, and barrier properties in thermoplastic potato starch films. Carbohydr Polym 194:357–364. https://doi.org/10.1016/j.carbpol.2018.04.056

    Article  CAS  PubMed  Google Scholar 

  45. Ghamari MA, Amiri S, Rezazadeh-Bari M, Rezazad-Bari L (2021) Physical, mechanical, and antimicrobial properties of active edible film based on milk proteins incorporated with Nigella sativa essential oil. Polym Bull. https://doi.org/10.1007/s00289-021-03550-y

    Article  Google Scholar 

  46. Cyras VP, Manfredi LB, Ton-That M-T, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 73:55–63. https://doi.org/10.1016/j.carbpol.2007.11.014

    Article  CAS  Google Scholar 

  47. Lendvai L, Apostolov A, Karger-Kocsis J (2017) Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate). Carbohydr Polym 173:566–572. https://doi.org/10.1016/j.carbpol.2017.05.100

    Article  CAS  PubMed  Google Scholar 

  48. Fraj A, Jaâfar F, Marti M et al (2019) A comparative study of oregano (Origanum vulgare L.) essential oil-based polycaprolactone nanocapsules/ microspheres: preparation, physicochemical characterization, and storage stability. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2019.111669

    Article  Google Scholar 

  49. Sogut E, Ili Balqis AM, Nur Hanani ZA, Seydim AC (2019) The properties of κ-carrageenan and whey protein isolate blended films containing pomegranate seed oil. Polym Test 77:105886. https://doi.org/10.1016/j.polymertesting.2019.05.002

    Article  CAS  Google Scholar 

  50. Ganiari S, Choulitoudi E, Oreopoulou V (2017) Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends Food Sci Technol 68:70–82. https://doi.org/10.1016/j.tifs.2017.08.009

    Article  CAS  Google Scholar 

  51. Terpinc P, Čeh B, Ulrih NP, Abramovič H (2012) Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind Crops Prod 39:210–217. https://doi.org/10.1016/j.indcrop.2012.02.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Project No. 420055/2018-5) for financial support, Multiuser Laboratory of Federal University—Paraná—Campus Londrina and Food Technology Institute (ITAL)—Campinas—São Paulo.

Funding

This work was financially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Project No. 420055/2018-5).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Ana Flávia Sampaio Paulo, Geane Cristiane Balan, Gylles Ricardo Ströher, Paulo Rodrigo Stival Bittencourt, Marly Sayuri Katsuda, Lyssa Setsuko Sakanaka and Fabio Yamashita. The first draft of the manuscript was written by Ana Flávia Sampaio Paulo and Marianne Ayumi Shirai, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marianne Ayumi Shirai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulo, A.F.S., Balan, G.C., Ströher, G.R. et al. Influence of free and microencapsulated oregano oil on starch and poly (butylene co-terephthalate adipate) active film properties. Polym. Bull. 79, 4859–4877 (2022). https://doi.org/10.1007/s00289-021-03743-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03743-5

Keywords

Navigation