Skip to main content
Log in

Synergistic effect of carbon fabric and multiwalled carbon nanotubes on the fracture, wear and dynamic load response of epoxy-based multiscale composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, the effect of inclusion of 0.5 to 2 wt% multiwalled carbon nanotubes (MWCNT) in epoxy on the performance of the epoxy-carbon fabric (CF) composites is analyzed. High-resolution transmission electron microscopy (HRTEM) correlated the dispersion of the nanofillers and morphology of the nanocomposites. The tensile and fracture properties of the composites improved significantly with MWCNT content. Beyond 1 wt%, the properties declined in both nano- and multiscale composites due to the agglomeration of MWCNTs. The wear rate showed a decreasing trend with increase in MWCNT content. The incorporation of MWCNTs resulted in a positive shift in the glass transition temperature (Tg) of the nanocomposites. The complex network formed between MWCNT and CF severely impeded the segmental mobility of the polymer chains which improved the storage modulus of the composites. From the tensile fracture surface analysis, the failure pattern of multiscale composites is found to be relatively ductile in comparison with epoxy-CF composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhu M, Li M, Wu Q et al (2014) Effect of processing temperature on the micro- and macro-interfacial properties of carbon fiber/epoxy composites. Compos Interfaces 21:443–453. https://doi.org/10.1080/15685543.2014.877270

    Article  CAS  Google Scholar 

  2. Islam ME, Mahdi TH, Hosur MV, Jeelani S (2015) Characterization of carbon fiber reinforced epoxy composites modified with nanoclay and carbon nanotubes. Procedia Eng 105:821–828. https://doi.org/10.1016/j.proeng.2015.05.078

    Article  CAS  Google Scholar 

  3. Liu L, Jia CY, He JM et al (2015) Interfacial characterization, control and modification of carbon fiber reinforced polymer composites. Compos Sci Technol 121:56–72. https://doi.org/10.1016/j.compscitech.2015.08.002

    Article  CAS  Google Scholar 

  4. Ramesh M, Palanikumar K, Reddy KH (2013) Comparative evaluation on properties of hybrid glass fiber-sisal/jute reinforced epoxy composites. Procedia Eng 51:745–750. https://doi.org/10.1016/j.proeng.2013.01.106

    Article  CAS  Google Scholar 

  5. Johnsen BB, Frømyr TR, Thorvaldsen T, Olsen T (2013) Preparation and characterisation of epoxy/alumina polymer nanocomposites. Compos Interfaces 20:721–740. https://doi.org/10.1080/15685543.2013.815603

    Article  CAS  Google Scholar 

  6. Ishida H, Zimmerman DA (1994) The development of an epoxy resin system for the injection molding of long-fiber epoxy composites. Polym Compos 15:93–100. https://doi.org/10.1002/pc.750150202

    Article  CAS  Google Scholar 

  7. Skandani AA, Boroujeni AY, Kalhor R et al (2015) Viscoelastic behavior of epoxy/carbon fiber/zno nano-rods hybrid composites. Polym Compos. https://doi.org/10.1002/pc.23106

    Article  Google Scholar 

  8. Shah DB, Patel KM, Joshi SJ et al (2019) Thermo-mechanical characterization of carbon fiber composites with different epoxy resin systems. Thermochim Acta 676:39–46. https://doi.org/10.1016/j.tca.2019.03.041

    Article  CAS  Google Scholar 

  9. Konnola R, Deeraj BDS, Sampath S et al (2018) Fabrication and characterization of toughened nanocomposites based on TiO2 nanowire-epoxy system. Polym Compos. https://doi.org/10.1002/pc.25058

    Article  Google Scholar 

  10. Su Y, Zhang S, Zhang X et al (2018) Preparation and properties of carbon nanotubes/carbon fiber/poly (ether ether ketone) multiscale composites. Compos Part A: Appl Sci Manufact 108:89–98. https://doi.org/10.1016/j.compositesa.2018.02.030

    Article  CAS  Google Scholar 

  11. De Paiva JMF, Mayer S, Rezende MC (2005) Evaluation of mechanical properties of four different carbon/epoxy composites used in aeronautical field. Mater Res 8:91–97. https://doi.org/10.1590/S1516-14392005000100016

    Article  Google Scholar 

  12. Vaganov G, Yudin V, Vuorinen J et al (2015) Influence of multiwalled carbon nanotubes on the processing behavior of epoxy powder compositions and on the mechanical properties of their fiber reinforced composites. Polym Compos. https://doi.org/10.1002/pc.23419

    Article  Google Scholar 

  13. Grady BP (2012) Effects of carbon nanotubes on polymer physics. J Polym Sci Part B Polym Phys 50:591–623. https://doi.org/10.1002/polb.23052

    Article  CAS  Google Scholar 

  14. McNally T, Pötschke P, Halley P et al (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232. https://doi.org/10.1016/j.polymer.2005.06.094

    Article  CAS  Google Scholar 

  15. Mani A, Tambe P, Rahaman A (2019) Flexural properties of multiscale nanocomposites containing multiwalled carbon nanotubes coated glass fabric in epoxy/graphene matrix. Compos Interfaces 26:935–962. https://doi.org/10.1080/09276440.2019.1569396

    Article  CAS  Google Scholar 

  16. Hameed A, Islam M, Mahmood N, Saeed S (2014) Thermal and mechanical properties of carbon nanotube/epoxy nanocomposites reinforced with pristine and functionalized multiwalled carbon nanotube. Polym Compos. https://doi.org/10.1002/pc.23097

    Article  Google Scholar 

  17. Ervina J, Mariatti M, Hamdan S (2016) Effect of filler loading on the tensile properties of multi-walled carbon nanotube and graphene nanopowder filled epoxy composites. Procedia Chem 19:897–905. https://doi.org/10.1016/j.proche.2016.03.132

    Article  CAS  Google Scholar 

  18. Guedes RM, Pereira CMC, Fonseca A, Oliveira MSA (2013) The effect of carbon nanotubes on viscoelastic behavior of biomedical grade ultra-high molecular weight polyethylene. Compos Struct 105:263–268. https://doi.org/10.1016/j.compstruct.2013.05.027

    Article  Google Scholar 

  19. Godara A, Mezzo L, Luizi F et al (2009) Influence of carbon nanotube reinforcement on the processing and the mechanical behavior of carbon fiber/epoxy composites. Carbon 47:2914–2923. https://doi.org/10.1016/j.carbon.2009.06.039

    Article  CAS  Google Scholar 

  20. Kumar M, Bhowmik S, Balachandran M, Abraham M (2016) Effect of surface functionalization on mechanical properties and decomposition kinetics of high performance polyetherimide/MWCNT nanocomposites. Composites A 90:147–160. https://doi.org/10.1016/j.compositesa.2016.06.025

    Article  CAS  Google Scholar 

  21. Mahato KK, Dutta K, Chandra Ray B (2019) Assessment of mechanical, thermal and morphological behavior of nano-Al 2 O 3 embedded glass fiber/epoxy composites at in-situ elevated temperatures. Compos Part B Eng 166:688–700. https://doi.org/10.1016/j.compositesb.2019.03.009

    Article  CAS  Google Scholar 

  22. Eskizeybek V, Ulus H, Kaybal HB et al (2018) Static and dynamic mechanical responses of CaCO3 nanoparticle modified epoxy/carbon fiber nanocomposites. Compos Part B Eng 140:223–231. https://doi.org/10.1016/j.compositesb.2017.12.013

    Article  CAS  Google Scholar 

  23. Pincheira G, Montalba C, Gacitua W et al (2016) Study of the effect of amino-functionalized multiwall carbon nanotubes on dry sliding wear resistance properties of carbon fiber reinforced thermoset polymers. Polym Bull 73:2287–2301. https://doi.org/10.1007/s00289-016-1608-4

    Article  CAS  Google Scholar 

  24. Alsaadi M, Bulut M, Erkliğ A, Jabbar A (2018) Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites. Compos Part B Eng 152:169–179. https://doi.org/10.1016/j.compositesb.2018.07.015

    Article  CAS  Google Scholar 

  25. Chamkouri H, Pooresmaeil M, Namazi H (2021) Carbon fiber/epoxy resin/α-aluminum oxide nanocomposites; fabrication, mechanical and thermal analysis. Iran Polym J 30:523–533. https://doi.org/10.1007/s13726-021-00909-w

    Article  CAS  Google Scholar 

  26. Wang C, Zhao M, Li J et al (2017) Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131:263–271. https://doi.org/10.1016/j.polymer.2017.10.049

    Article  CAS  Google Scholar 

  27. Taylor P, Kim S, Kim JT et al (2012) Thermal and mechanical properties of epoxy/carbon fiber composites reinforced with multi-walled carbon nanotubes. J Macromol Sci Part B Phys. https://doi.org/10.1080/00222348.2011.596799

    Article  Google Scholar 

  28. Bhat MA, Sing G (2018) Retrofitting of reinforced concrete beams by using carbon fiber reinforced polymer sheets. Int J Civ Eng Technol 9:1782–1790

    Google Scholar 

  29. Wu Q, He J, Wang F et al (2020) Constructing a simple anti-sandwich structure on carbon fiber surface for simultaneously strengthening and toughening the interphase of epoxy composites. Compos Struct 240:112075. https://doi.org/10.1016/j.compstruct.2020.112075

    Article  Google Scholar 

  30. Nie H, Shen X, Tang B et al (2019) Effectively enhanced interlaminar shear strength of carbon fiber fabric/epoxy composites by oxidized short carbon fibers at an extremely low content. Compos Sci Technol 183:107803. https://doi.org/10.1016/j.compscitech.2019.107803

    Article  CAS  Google Scholar 

  31. Zhang Z, Wang C, Huang G et al (2018) Thermal degradation behaviors and reaction mechanism of carbon fiber-epoxy composite from hydrogen tank by TG-FTIR. J Hazard Mater 357:73–80. https://doi.org/10.1016/j.jhazmat.2018.05.057

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Jin K, Wang C et al (2019) Effect of fiber surface functionalization on shear behavior at carbon fiber/epoxy interface through molecular dynamics analysis. Compos Part A 126:105611. https://doi.org/10.1016/j.compositesa.2019.105611

    Article  CAS  Google Scholar 

  33. Tehrani M, Boroujeni AY, Hartman TB et al (2013) Mechanical characterization and impact damage assessment of a woven carbon fiber reinforced carbon nanotube–epoxy composite. Compos Sci Technol 75:42–48. https://doi.org/10.1016/j.compscitech.2012.12.005

    Article  CAS  Google Scholar 

  34. Rasana N, Jayanarayanan K (2018) Experimental and micromechanical modeling of fracture toughness: polypropylene/glass fiber hybrid composites. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705718785687

    Article  Google Scholar 

  35. Xue Y, Wu W, Jacobs O, Schädel B (2006) Tribological behavior of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes. Polym Testing 25:221–229. https://doi.org/10.1016/j.polymertesting.2005.10.005

    Article  CAS  Google Scholar 

  36. Ghaleb ZA, Mariatti M, Ariff ZM (2017) Synergy effects of graphene and multiwalled carbon nanotubes hybrid system on properties of epoxy nanocomposites. J Reinf Plast Compos. https://doi.org/10.1177/0731684417692055

    Article  Google Scholar 

  37. Zhang J, Zhuang R, Liu J et al (2010) Functional interphases with multi-walled carbon nanotubes in glass fiber/epoxy composites. Carbon 48:2273–2281. https://doi.org/10.1016/j.carbon.2010.03.001

    Article  CAS  Google Scholar 

  38. Jayan JS, Saritha A, Durga B et al (2020) Graphene oxide as a prospective graft in polyethylene glycol for enhancing the toughness of epoxy nanocomposites. Polym Eng Sci. https://doi.org/10.1002/pen.25335

    Article  Google Scholar 

  39. Zavareh S, Vahdat G (2012) Toughening of brittle epoxy using bitumen as a new modifier. J Reinf Plast Compos. https://doi.org/10.1177/0731684412437266

    Article  Google Scholar 

  40. Sarath Kumar P, Jayanarayanan K, Balachandran M (2018) thermal and mechanical behavior of functionalized MWCNT reinforced epoxy carbon fabric composites. Mater Today Proc 24:1157–1166. https://doi.org/10.1016/j.matpr.2020.04.429

    Article  CAS  Google Scholar 

  41. Mei H, Zhang S, Chen H et al (2016) Interfacial modification and enhancement of toughening mechanisms in epoxy composites with CNTs grafted on carbon fibers. Compos Sci Technol 134:89–95. https://doi.org/10.1016/j.compscitech.2016.08.010

    Article  CAS  Google Scholar 

  42. Zhang Q, Wu J, Gao L et al (2016) Dispersion stability of functionalized MWCNT in the epoxy–amine system and its effects on mechanical and interfacial properties of carbon fiber composites. Mater Des 94:392–402. https://doi.org/10.1016/j.matdes.2016.01.062

    Article  CAS  Google Scholar 

  43. Remanan M, Bhowmik S, Varshney L, Jayanarayanan K (2019) Tungsten carbide, boron carbide, and MWCNT reinforced poly (aryl ether ketone) nanocomposites: morphology and thermomechanical behavior. J Appl Polym Sci. https://doi.org/10.1002/app.47032

    Article  Google Scholar 

  44. Maksimkin AV, Kharitonov AP, Mostovaya KS et al (2016) Bulk oriented nanocomposites of ultrahigh molecular weight polyethylene reinforced with fluorinated multiwalled carbon nanotubes with nanofibrillar structure. Compos Part B Eng 94:292–298. https://doi.org/10.1016/j.compositesb.2016.03.061

    Article  CAS  Google Scholar 

  45. Yuan X, Zhu B, Cai X et al (2017) Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing. Appl Surf Sci 401:414–423. https://doi.org/10.1016/j.apsusc.2016.12.234

    Article  CAS  Google Scholar 

  46. Kim KW, Kim DK, Kim BS et al (2017) Cure behaviors and mechanical properties of carbon fiber-reinforced nylon6/epoxy blended matrix composites. Compos Part B Eng 112:15–21. https://doi.org/10.1016/j.compositesb.2016.12.009

    Article  CAS  Google Scholar 

  47. Alhareb AO, Akil HM, Ahmad ZA (2017) Impact strength, fracture toughness and hardness improvement of PMMA denture base through addition of nitrile rubber/ceramic fillers. Saudi J Dent Res 8:26–34. https://doi.org/10.1016/j.sjdr.2016.04.004

    Article  Google Scholar 

  48. Deeraj BDS, Harikrishnan R, Jayan JS et al (2020) Enhanced visco-elastic and rheological behavior of epoxy composites reinforced with polyimide nanofiber. Nano-Structures Nano-Objects 21:100421. https://doi.org/10.1016/j.nanoso.2019.100421

    Article  CAS  Google Scholar 

  49. Warrier A, Godara A, Rochez O et al (2010) The effect of adding carbon nanotubes to glass/epoxy composites in the fiber sizing and/or the matrix. Compos Part A Appl Sci Manuf 41:532–538. https://doi.org/10.1016/j.compositesa.2010.01.001

    Article  CAS  Google Scholar 

  50. Rahmani H, Najafi SHM, Ashori A (2014) Mechanical performance of epoxy/carbon fiber laminated composites. J Reinf Plast Compos. https://doi.org/10.1177/0731684413518255

    Article  Google Scholar 

  51. Domun N, Paton KR, Hadavinia H et al (2017) Enhancement of fracture toughness of epoxy nanocomposites by combining nanotubes and nanosheets as fillers. Materials. https://doi.org/10.3390/ma10101179

    Article  PubMed  PubMed Central  Google Scholar 

  52. Papadopoulos A, Gkikas G, Paipetis AS, Barkoula NM (2016) Effect of CNTs addition on the erosive wear response of epoxy resin and carbon fiber composites. Compos Part A Appl Sci Manuf 84:299–307. https://doi.org/10.1016/j.compositesa.2016.02.012

    Article  CAS  Google Scholar 

  53. Wang Y, Xu Z, Chen L (2010) Effect of carbon nanotubes on friction and wear properties of glass effect of carbon nanotubes on friction and wear properties of glass fiber/epoxy composites. Appl Mech Mater. https://doi.org/10.4028/www.scientific.net/AMM.44-47.2181

  54. Her S, Chien P (2020) Mode II interfacial fracture toughness of multi-walled carbon nanotubes reinforced nanocomposite film on aluminum substrate. Nanomaterials. https://doi.org/10.3390/nano10050904

  55. Remanan M, Kannan M, Rao RS (2017) Microstructure development, wear characteristics and kinetics of thermal decomposition of hybrid nanocomposites based on poly aryl ether ketone, boron carbide and multi walled carbon nanotubes. J Inorga Organomet Polym Mater. https://doi.org/10.1007/s10904-017-0626-5

    Article  Google Scholar 

  56. Bobbili R, Madhu V (2015) Sliding wear behavior of E-glass-epoxy/MWCNT composites: an experimental assessment. Eng Sci Technol Int J. https://doi.org/10.1016/j.jestch.2015.07.008

    Article  Google Scholar 

  57. Lange J, Altmann N, Kelly CT, Halley PJ (2000) Understanding vitrification during cure of epoxy resins using dynamic scanning calorimetry and rheological techniques. Polymer. https://doi.org/10.1016/S0032-3861(99)00758-2

  58. Ajeesh G, Bhowmik S, Sivakumar V et al (2016) Influence of surface activated carbon nano fiber on thermo-mechanical properties of high performance polymeric nano composites. J Compos Mater. https://doi.org/10.1177/0021998316658540

  59. Bilyeu B, Brostow W, Menard KP et al (2002) Separation of gelation from vitrification in curing of a fiber-reinforced epoxy composite. Polym Compos 23:1111–1119. https://doi.org/10.1002/pc.10505

    Article  CAS  Google Scholar 

  60. Jayanarayanan K, Rasana N, Mishra RK (2017) Dynamic mechanical thermal analysis of polymer nanocomposites. Elsevier, New York, pp 123–157. https://doi.org/10.1016/B978-0-323-46139-9.00006-2

    Book  Google Scholar 

  61. Garcia FG, Soares BG, Pita VJ, Sánchez R, Rieumont J (2007) Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. J Appl Polym Sci 106(3):2047–2055. https://doi.org/10.1002/app.24895

    Article  CAS  Google Scholar 

  62. Deng SH, Zhou XD, Zhu MQ et al (2013) Interfacial toughening and consequent improvement in fracture toughness of carbon fiber reinforced epoxy resin composites: induced by diblock copolymers. Express Polym Lett 7:925–935. https://doi.org/10.3144/expresspolymlett.2013.90

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Indian Space Research Organization for funding this research work. We would like to gratefully acknowledge the support of MHRD (Govt. of India) extended to Amrita Vishwa Vidyapeetham, through their FAST Grant (F. No. 5-6/2013-TS.VII), DST (Govt. of India) extended to Amrita Vishwa Vidyapeetham, through their FIST Grant (SR/FST/ETI-416/2016) and STIC, Kochi, India for the conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meera Balachandran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarath Kumar, P., Jayanarayanan, K., Deeraj, B.D.S. et al. Synergistic effect of carbon fabric and multiwalled carbon nanotubes on the fracture, wear and dynamic load response of epoxy-based multiscale composites. Polym. Bull. 79, 5063–5084 (2022). https://doi.org/10.1007/s00289-021-03742-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03742-6

Keywords

Navigation