Skip to main content
Log in

Radiation synthesis of polyacrylamide/functionalized multiwalled carbon nanotubes composites for the adsorption of Cu(II) metal ions from aqueous solution

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyacrylamide/functionalized multiwalled carbon nanotubes (PAAm/FMWCNTs) composites were prepared by different polymerization techniques using gamma radiation as an initiator. These polymerization techniques were template polymerization of acrylic acid (AA) onto PAAm/FMWCNTs (N1), template polymerization of acrylamide (AAm) onto PAAm/FMWCNTs (N2), copolymerization of AA and AAm onto FMWCNTs (N3), and in situ polymerization of AAm from FMWCNTs surface (N4). The composites were analyzed by FTIR, SEM, and TGA. The composites were applied for the removal of Cu(II) metal ions by the batch adsorption method. The adsorption was investigated under various experimental conditions including initial pH, contact time, composites dosage, the concentration of Cu(II) metal ions, and temperature. The adsorption capacities of N1, N2, N3, and N4 composites were 385.44, 330.23, 351.95, and 320.29 mg/g, respectively, at a contact time: 90 min, initial concentration of Cu(II) metal ions: 0.8 g/L, the temperature: 25 °C, rpm: 150, pH: 5. and V/m: 1 L/g. The adsorption experimental results were closer to pseudo-second-order and Langmuir adsorption models. Thermodynamic data showed that the adsorption process was endothermic. The desorption studies have shown that PAAm/FMWCNTs composites adsorbents have a good adsorption/desorption performance for Cu(II) metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Al-saydeh SA, El-naas MH, Zaidi SJ (2017) Copper removal from industrial wastewater : a comprehensive review. J Ind Eng Chem 56:35–44. https://doi.org/10.1016/j.jiec.2017.07.026

    Article  CAS  Google Scholar 

  2. Aydın H, Bulut Y, Yerlikaya C (2008) Removal of copper(II) from aqueous solution by adsorption onto low-cost adsorbents. J Environ Manage 87:37–45. https://doi.org/10.1016/j.jenvman.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  3. Verbych S, Bryk M, Chornokur G, Fuhr B (2005) Separation science and technology removal of copper ( ii ) from aqueous solutions by chitosan adsorption. Sep Sci Technol 40:1749–1759

    Article  CAS  Google Scholar 

  4. Yantasee W, Lin Y, Fryxell GE et al (2004) Selective removal of copper (II) from aqueous solutions using fine-grained activated carbon functionalized with amine. Ind Eng Chem Res 43:2759–2764

    Article  CAS  Google Scholar 

  5. Abdelmonem IM, Metwally E, Siyam TE et al (2019) Radiation synthesis of starch-acrylic acid–vinyl sulfonic acid/multiwalled carbon nanotubes composite for the removal of 134Cs and 152 + 154Eu from aqueous solutions. J Radioanal Nucl Chem 319:1145–1157. https://doi.org/10.1007/s10967-018-6392-1

    Article  CAS  Google Scholar 

  6. El-Sweify FH, Abdelmonem IM, El-Masry AM et al (2019) Adsorption behavior of Co(II) and Eu(III) on polyacrylamide/multiwalled carbon nanotube composites. Radiochemistry 61:323–330. https://doi.org/10.1134/S106636221903007X

    Article  CAS  Google Scholar 

  7. Abdelmonem IM, Metwally E, Siyam TE et al (2019) Adsorption of 60Co from aqueous solution onto alginate–acrylic acid–vinylsulfonic acid/multiwalled carbon nanotubes composite. Polym Bull. https://doi.org/10.1007/s00289-019-02978-7

    Article  Google Scholar 

  8. Siyam T (2001) Development of acrylamide polymers for the treatment of wastewater. Des Monomers Polym 4:107–168. https://doi.org/10.1163/156855500300203377

    Article  CAS  Google Scholar 

  9. Iijima S (1991) Helicial microtubules of graphitic carbon. Lett To Nat 354:56–58

    Article  CAS  Google Scholar 

  10. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401. https://doi.org/10.1016/j.progpolymsci.2009.09.003

    Article  CAS  Google Scholar 

  11. Kim H-S, Il KH, Yun YS et al (2011) Nanoporous silica membranes fabricated using multiwalled carbon nanotubes. J Nanosci Nanotechnol 11:4434–4438. https://doi.org/10.1166/jnn.2011.3655

    Article  CAS  PubMed  Google Scholar 

  12. Saito N, Usui Y, Aoki K et al (2009) Carbon nanotubes: biomaterial applications. Chem Soc Rev 38:1897–1903. https://doi.org/10.1039/b804822n

    Article  CAS  PubMed  Google Scholar 

  13. Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120. https://doi.org/10.1007/s12274-009-9009-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nabid MR, Sedghi R, Hajimirza R et al (2011) A nanocomposite made from conducting organic polymers and multi-walled carbon nanotubes for the adsorption and separation of gold(III) ions. Microchim Acta 175:315–322. https://doi.org/10.1007/s00604-011-0680-6

    Article  CAS  Google Scholar 

  15. Duran A, Tuzen M, Soylak M (2009) Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. J Hazard Mater 169:466–471. https://doi.org/10.1016/j.jhazmat.2009.03.119

    Article  CAS  PubMed  Google Scholar 

  16. Sitko R, Zawisza B, Malicka E (2012) Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions. TrAC - Trends Anal Chem 37:22–31. https://doi.org/10.1016/j.trac.2012.03.016

    Article  CAS  Google Scholar 

  17. Şenol ZM, Şenol Arslan D, Şimşek S (2019) Preparation and characterization of a novel diatomite-based composite and investigation of its adsorption properties for uranyl ions. J Radioanal Nucl Chem 321:791–803. https://doi.org/10.1007/s10967-019-06662-y

    Article  CAS  Google Scholar 

  18. Şenol ZM, Şimşek S, Ulusoy Hİ, Özer A (2020) Synthesis and characterization of a polyacrylamide-dolomite based new composite material for efficient removal of uranyl ions. J Radioanal Nucl Chem 324:317–330. https://doi.org/10.1007/s10967-020-07047-2

    Article  CAS  Google Scholar 

  19. Şenol ZM, Şimşek S, Ulusoy Hİ et al (2020) Insight from adsorption properties of Xylidyl Blue embedded hydrogel for effective removal of uranyl: experimental and theoretical approaches. Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106566

    Article  Google Scholar 

  20. Kaşgöz H, Özgümüš S, Orbay M (2003) Modified polyacrylamide hydrogels and their application in removal of heavy metal ions. Polymer (Guildf) 44:1785–1793. https://doi.org/10.1016/S0032-3861(03)00033-8

    Article  CAS  Google Scholar 

  21. Kalaivani SS, Vidhyadevi T, Murugesan A et al (2014) The use of new modified poly(acrylamide) chelating resin with pendent benzothiazole groups containing donor atoms in the removal of heavy metal ions from aqueous solutions. Water Resour Ind 5:21–35. https://doi.org/10.1016/j.wri.2014.04.001

    Article  Google Scholar 

  22. Ma J, Zhou G, Chu L et al (2017) Efficient removal of heavy metal ions with an EDTA functionalized chitosan/polyacrylamide double network hydrogel. ACS Sustain Chem Eng 5:843–851. https://doi.org/10.1021/acssuschemeng.6b02181

    Article  CAS  Google Scholar 

  23. Abdelmonem IM (2015) Studies on the use of gamma radiation-induced preparation of polyacrylamide-carbon nanotube composites for potential applications. Faculty of Science, Zagazig University, Zagazig, Egypt

    Google Scholar 

  24. Gizawy MA, Aydia MI, Abdel Monem IM et al (2019) Radiochemical separation of reactor produced Sc-47 from natural calcium target using Poly(acrylamide-acrylic acid)/multi-walled carbon nanotubes composite. Appl Radiat Isot 150:87–94. https://doi.org/10.1016/j.apradiso.2019.05.022

    Article  CAS  PubMed  Google Scholar 

  25. Ibrahim AG, Saleh AS, Elsharma EM et al (2019) Gamma radiation-induced preparation of poly(1-vinyl-2-pyrrolidone-co-sodium acrylate) for effective removal of Co(II), Ni(II), and Cu(II). Polym Bull 76:303–322. https://doi.org/10.1007/s00289-018-2379-x

    Article  CAS  Google Scholar 

  26. Dinu MV, Dragan ES (2010) Evaluation of Cu2+, Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: kinetics and isotherms. Chem Eng J 160:157–163. https://doi.org/10.1016/j.cej.2010.03.029

    Article  CAS  Google Scholar 

  27. Demiral H, Güngor C (2016) Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J Clean Prod 124:103–113. https://doi.org/10.1016/j.jclepro.2016.02.084

    Article  CAS  Google Scholar 

  28. Solpan D, Torun M, Guven O (2008) The Usability of (sodium alginate/acrylamide) semi-interpenetrating polymer networks on removal of some textile dyes dilek. J Appl Polym Sci 108:3787–3795. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  29. Abdelmonem IM, Metwally E, Siyam TE et al (2020) Gamma radiation-induced preparation of chitosan-acrylic acid-1-vinyl-2-vinylpyrrolidone/multiwalled carbon nanotubes composite for removal of 152 + 154Eu, 60Co and 134Cs radionuclides. Int J Biol Macromol 164:2258–2266. https://doi.org/10.1016/j.ijbiomac.2020.08.120

    Article  CAS  PubMed  Google Scholar 

  30. Gizawy MA, Shamsel-Din HA, Abdelmonem IM et al (2020) Synthesis of chitosan-acrylic acid/multiwalled carbon nanotubes composite for theranostic 47Sc separation from neutron irradiated titanium target. Int J Biol Macromol 163:79–86

    Article  CAS  Google Scholar 

  31. Schweitzer GK, Pesterfiel LL (2010) The aqueous chemistry of the elements. Oxford, New York. https://doi.org/10.1093/oso/9780195393354.001.0001

    Book  Google Scholar 

  32. Şenol ZM, Şimşek S (2020) Equilibrium, kinetics and thermodynamics of Pb(II) ions from aqueous solution by adsorption onto chitosan-dolomite composite beads. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1790546

    Article  Google Scholar 

  33. Gök C (2017) Equilibrium, kinetic and thermodynamic studies of europium adsorption by biopolymeric composite. Int J Chem Eng Appl 8:334–339. https://doi.org/10.18178/ijcea.2017.8.5.679

    Article  CAS  Google Scholar 

  34. Amini M, Younesi H, Bahramifar N (2013) Biosorption of U(VI) from aqueous solution by Chlorella vulgaris : equilibrium, kinetic, and thermodynamic studies. J Environ Eng 139:410–421. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000651

    Article  CAS  Google Scholar 

  35. Sun J, Li Y, Liu T et al (2014) Equilibrium, kinetic and thermodynamic studies of cationic red X-Grl adsorption on graphene oxide. Environ Eng Manag J 13:2551–2559. https://doi.org/10.1016/j.materresbull.2012.04.021

    Article  CAS  Google Scholar 

  36. Suguna M, Siva Kumar N (2013) Equilibrium, kinetic and thermodynamic studies on biosorption of lead(II) and cadmium(II) from aqueous solution by polypores biomass. Indian J Chem Technol 20:57–69

    CAS  Google Scholar 

  37. Abdelmonem IM (2019) Natural polymer–carbon nanotube composites prepared by gamma radiation for the removal of some radionuclides. Faculty of Science, Ain Shams University, Abassia, Cairo, Egypt

    Google Scholar 

  38. Rainert KT, Nunes HCA, Gonçalves MJ, Tavares BLB (2017) Equilibrium, kinetic and thermodynamic studies on the removal of reactive dye RBBR using discarded SBS paperboard coated with PET as an adsorbent. Desalin Water Treat 86:203–212. https://doi.org/10.5004/dwt.2017.21299

    Article  CAS  Google Scholar 

  39. Haroon H, Ashfaq T, Gardazi SMH et al (2016) Equilibrium kinetic and thermodynamic studies of Cr(VI) adsorption onto a novel adsorbent of Eucalyptus camaldulensis waste: batch and column reactors. Korean J Chem Eng 33:2898–2907. https://doi.org/10.1007/s11814-016-0160-0

    Article  CAS  Google Scholar 

  40. Alqadami AA, Naushad M, Abdalla MA et al (2016) Adsorptive removal of toxic dye using Fe3O4−TSC nanocomposite: equilibrium, kinetic, and thermodynamic studies. J Chem Eng Data 61:3806–3813. https://doi.org/10.1021/acs.jced.6b00446

    Article  CAS  Google Scholar 

  41. Xu L, Zheng X, Cui H et al (2017) Equilibrium, kinetic and thermodynamic studies on the adsorption of cadmium from aqueous solution by modified biomass ash. Bioinorg Chem Appl 2017:1–9. https://doi.org/10.1155/2017/3695604

    Article  CAS  Google Scholar 

  42. Liu LE, Liu J, Li H et al (2012) Equilibrium, kinetic and thermodynamic studies of lead (II) biosorption on sesame leaf. BioResources 7:3555–3572

    CAS  Google Scholar 

  43. Achmad A, Kassim J, Suan TK et al (2012) Equilibrium, kinetic and thermodynamic studies on the adsorption of direct dye onto a novel green adsorbent developed from Uncaria gambir extract. J Phys Sci 23:1–13

    CAS  Google Scholar 

  44. Huang Q, Lin X, Xiong L et al (2017) Equilibrium kinetic and thermodynamic studies of acid soluble lignin adsorption from rice straw hydrolysate by a self-synthesized macromesoporous resin. RSC Adv 7:23896–23906

    Article  Google Scholar 

  45. Qiang H, Jiao Z, Meiying L et al (2018) Synthesis of polyacrylamide immobilized molybdenum disulfide (MoS2@PDA@PAM) composites via mussel-inspired chemistry and surface-initiated atom transfer radical polymerization for removal of copper(II) ions. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2017.12.027

    Article  Google Scholar 

  46. Mondal S, Majumder SK (2019) Honeycomb-like porous activated carbon for efficient copper(II) adsorption synthesized from natural source : kinetic study and equilibrium isotherm analysis. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103236

    Article  Google Scholar 

  47. Mbouga N, Goletti M, Giscard KK et al (2018) Adsorption of copper(II) ions from aqueous solutions by using natural saponins-clay modified materials: isotherm, kinetic and thermodynamics. Am J Chem 8:29–35. https://doi.org/10.5923/j.chemistry.20180802.01

    Article  CAS  Google Scholar 

  48. Shah PU, Raval NP, Shah NK (2015) Adsorption of copper from an aqueous solution by chemically modified cassava starch. J Mater Environ Sci 6:2573–2582

    CAS  Google Scholar 

  49. Wang J, Li Z, Li S et al (2013) Adsorption of Cu(II) on oxidized multi-walled carbon nanotubes in the presence of hydroxylated and carboxylated fullerenes. PLoS ONE 8:1–11. https://doi.org/10.1371/journal.pone.0072475

    Article  CAS  Google Scholar 

  50. Moulay S, Bensacia N, Garin F et al (2013) Polyacrylamide-based sorbents for the removal of hazardous metals. Adsorpt Sci Technol 31:691–709. https://doi.org/10.1260/0263-6174.31.8.691

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff of the Nuclear Chemistry Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority, for their valuable support in the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islam Mohamed Abdelmonem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abo-Zahra, S.F., Abdelmonem, I.M., Siyam, T.E. et al. Radiation synthesis of polyacrylamide/functionalized multiwalled carbon nanotubes composites for the adsorption of Cu(II) metal ions from aqueous solution. Polym. Bull. 79, 4395–4415 (2022). https://doi.org/10.1007/s00289-021-03726-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03726-6

Keywords

Navigation