Skip to main content
Log in

First-principle study on ionic pair dissociation in PEO-PVP-NaClO4 blend for solid polymer electrolyte

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Investigation of physicochemical and electronic properties of polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP) blended solid polymer electrolyte incorporated with sodium perchlorate (NaClO4) as ion-conducting species has been carried out using first-principle Study. A proficient approach is proposed to analyse the conductive mechanism of electrolytes, based on density functional theory. Density of states (DOS) and projected density of states (PDOS) analysis provides a quantitative explanation of the electronic bandgap of the polymer–polymer (PEO-PVP) and polymer–salt (PEO-PVP-NaClO4) system. The bonding characteristic and charge distributions determined by charge density plot and crystal orbital overlap population analysis show to have a strong qualitative correlation with the ionic conductivity in solid polymer electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li Q, Chen J, Fan L et al (2016) Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ 1:18–42. https://doi.org/10.1016/j.gee.2016.04.006

    Article  Google Scholar 

  2. Cheng X, Pan J, Zhao Y et al (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8:1–16. https://doi.org/10.1002/aenm.201702184

    Article  CAS  Google Scholar 

  3. Din MU, M, Ramakumar S, M.S I, Murugan R, (2019) Advances in electrolytes for high capacity rechargeable lithium-sulphur batteries. Curr Smart Mater 04:1–35. https://doi.org/10.2174/2405465804666190617114914

    Article  Google Scholar 

  4. Osada I, De Vries H, Scrosati B, Passerini S (2016) Ionic-liquid-based polymer electrolytes for battery applications. Angew Chemie—Int Ed 55:500–513. https://doi.org/10.1002/anie.201504971

    Article  CAS  Google Scholar 

  5. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41:223001. https://doi.org/10.1088/0022-3727/41/22/223001

    Article  CAS  Google Scholar 

  6. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics (Kiel). 22:1259–1279. https://doi.org/10.1007/s11581-016-1756-4

    Article  CAS  Google Scholar 

  7. Jiang Y, Yan X, Ma Z et al (2018) Development of the PEO based solid polymer electrolytes for all-solid state lithium ion batteries. Polymers (Basel) 10:1–13. https://doi.org/10.3390/polym10111237

    Article  CAS  Google Scholar 

  8. Tripathi SK, Gupta A, Kumari M (2012) Studies on electrical conductivity and dielectric behaviour of PVdF-HFP-PMMA-NaI polymer blend electrolyte. Bull Mater Sci 35:969–975. https://doi.org/10.1007/s12034-012-0387-2

    Article  CAS  Google Scholar 

  9. Rajendran S, Sivakumar M, Subadevi R (2004) Investigations on the effect of various plasticizers in PVA-PMMA solid polymer blend electrolytes. Mater Lett 58:641–649. https://doi.org/10.1016/S0167-577X(03)00585-8

    Article  CAS  Google Scholar 

  10. Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mater Sci Eng B Solid-State Mater Adv Technol 85:11–15. https://doi.org/10.1016/S0921-5107(01)00555-4

    Article  Google Scholar 

  11. Pelizza F, Johnston K (2019) A density functional theory study of poly(vinylidene difluoride) crystalline phases. Polymer (Guildf) 179:121585. https://doi.org/10.1016/j.polymer.2019.121585

    Article  CAS  Google Scholar 

  12. Indu MS, Alexander GV, Deviannapoorani C, Murugan R (2019) Realization of room temperature lithium metal battery with high Li+ conductive lithium garnet solid electrolyte. Ceram Int 45:22610–22616. https://doi.org/10.1016/j.ceramint.2019.07.293

    Article  CAS  Google Scholar 

  13. Johansson P (2015) Computational modelling of polymer electrolytes: What do 30 years of research efforts provide us today? Electrochim Acta 175:42–46. https://doi.org/10.1016/j.electacta.2015.03.116

    Article  CAS  Google Scholar 

  14. Farazin A, Mohammadimehr M (2020) Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: a molecular dynamics simulation. Adv Nano Res 9:83–90. https://doi.org/10.12989/anr.2020.9.2.083

    Article  Google Scholar 

  15. Farazin A, Aghdam HA, Motififard M et al (2019) A polycaprolactone bio-nanocomposite bone substitute fabricated for femoral fracture approaches: molecular dynamic and micro-mechanical investigation. J Nanoanalysis 6:172–184.

    Google Scholar 

  16. Abutalib MM, Rajeh A (2020) Influence of Fe3O4 nanoparticles on the optical, magnetic and electrical properties of PMMA/PEO composites: combined FT-IR/DFT for electrochemical applications. J Organomet Chem 920:121348. https://doi.org/10.1016/j.jorganchem.2020.121348

    Article  CAS  Google Scholar 

  17. Åvall G, Mindemark J, Brandell D, Johansson P (2018) Sodium-ion battery electrolytes: modeling and simulations. Adv Energy Mater 8:1–22. https://doi.org/10.1002/aenm.201703036

    Article  CAS  Google Scholar 

  18. Khandan A, Saber-Samandari S, Telloo M, Kazeroni ZS, Esmaeil S, Sheikhbahaei E, Farazin A, Joneidi Yekta H, Kamyab B (2020) A mitral heart valve prototype using sustainable polyurethane polymer: fabricated by 3D bioprinter. AUT J. Mech. Eng. h, Tested by Molecular Dynamics Simulation. https://doi.org/10.22060/AJME.2020.17450.5862

    Book  Google Scholar 

  19. Farazin A, Aghadavoudi F, Motififard M et al (2020) Nanostructure, molecular dynamics simulation and mechanical performance of PCL membranes reinforced with antibacterial nanoparticles. J Appl Comput Mech. https://doi.org/10.22055/JACM.2020.32902.2097

    Article  Google Scholar 

  20. Brandell D, Liivat A, Aabloo A, Thomas JO (2005) Molecular dynamics simulation of the crystalline short-chain polymer system LiPF6·PEO6 (Mw ∼ 1000). J Mater Chem 15:4338–4345. https://doi.org/10.1039/b505091j

    Article  CAS  Google Scholar 

  21. Xue S, Liu Y, Li Y et al (2017) Diffusion of lithium ions in amorphous and crystalline Poly(ethylene oxide)3:LiCF3SO3Polymer electrolytes. Electrochim Acta 235:122–128. https://doi.org/10.1016/j.electacta.2017.03.083

    Article  CAS  Google Scholar 

  22. Johansson P, Jacobsson P (2003) An ab initio approach to the single ion transport in crystalline LiPF6PEO6. Electrochimica Acta. Pergamon 48:2279–2281. https://doi.org/10.1016/S0013-4686(03)00215-9

    Article  CAS  Google Scholar 

  23. Liivat A (2011) New crystalline NaAsF6-PEO8 complex: a density functional theory study. Electrochimica Acta Elsevier Ltd 57:244–249. https://doi.org/10.1016/j.electacta.2011.06.097

    Article  CAS  Google Scholar 

  24. Chaurasia SK, Saroj AL, Shalu Singh VK, Tripathi AK, Gupta AK, Verma YL, Singh RK (2015) Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6]. AIP Adv 5:13. https://doi.org/10.1063/1.4927768

    Article  CAS  Google Scholar 

  25. Ebadi M, Marchiori C, Mindemark J et al (2019) Assessing structure and stability of polymer/lithium-metal interfaces from first-principles calculations. J Mater Chem A 7:8394–8404. https://doi.org/10.1039/c8ta12147h

    Article  CAS  Google Scholar 

  26. Singh VK, Shalu BL et al (2017) Solid polymer electrolytes based on Li+/ionic liquid for lithium secondary batteries. J Solid State Electrochem 21:1713–1723. https://doi.org/10.1007/s10008-017-3529-z

    Article  CAS  Google Scholar 

  27. Sadiq M, Arya A, Sharma AL (2019) Synthesis and characterizations (electrical and thermal stability properties) of the blended polymer nanocomposites. Mater Today Proc 12:605–613. https://doi.org/10.1016/j.matpr.2019.03.104

    Article  CAS  Google Scholar 

  28. Shanmukaraj D, Wang GX, Murugan R, Liu HK (2008) Ionic conductivity and electrochemical stability of poly(methylmethacrylate)-poly(ethylene oxide) blend-ceramic fillers composites. J Phys Chem Solids 69:243–248. https://doi.org/10.1016/j.jpcs.2007.08.072

    Article  CAS  Google Scholar 

  29. Pritam AA, Sharma AL (2019) Dielectric relaxations and transport properties parameter analysis of novel blended solid polymer electrolyte for sodium-ion rechargeable batteries. J Mater Sci 54:7131–7155. https://doi.org/10.1007/s10853-019-03381-3

    Article  CAS  Google Scholar 

  30. Fergus JW (2012) Ion transport in sodium ion conducting solid electrolytes. Solid State Ionics 227:102–112. https://doi.org/10.1016/j.ssi.2012.09.019

    Article  CAS  Google Scholar 

  31. Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22:2725–2745. https://doi.org/10.1007/s10008-018-3965-4

    Article  CAS  Google Scholar 

  32. Xue S, Teeters D, Crunkleton DW, Wang S (2019) Ab initio calculations for crystalline PEO 6:LiPF 6 polymer electrolytes. Comput Mater Sci 160:173–179. https://doi.org/10.1016/j.commatsci.2019.01.007

    Article  CAS  Google Scholar 

  33. Xue S, Liu Y, Dang H et al (2016) Ab initio calculations of the atomic and electronic structures of crystalline PEO3:LiCF3SO3 electrolytes. Comput Mater Sci 112:170–174. https://doi.org/10.1016/j.commatsci.2015.10.035

    Article  CAS  Google Scholar 

  34. Johansson P, Jacobsson P (2003) An ab initio approach to the single ion transport in crystalline LiPF6PEO6. Electrochimica Acta. 48:2279–2281. https://doi.org/10.1016/S0013-4686(03)00215-9

    Article  CAS  Google Scholar 

  35. Rao BK, Verma ML (2017) First principle study of PEO-AgI polymer systems. Chem Phys Lett 679:176–180. https://doi.org/10.1016/j.cplett.2017.05.012

    Article  CAS  Google Scholar 

  36. Johansson P, Tegenfeldt J, Lindgren J (1999) Modelling amorphous lithium salt-PEO polymer electrolytes: ab initio calculations of lithium ion-tetra-, penta- and hexaglyme complexes. Polymer (Guildf) 40:4399–4406. https://doi.org/10.1016/S0032-3861(98)00676-4

    Article  CAS  Google Scholar 

  37. Tozer DJ, Peach MJG (2014) Density functional theory and its applications. Phys Chem Chem Phys 16:14333–14333. https://doi.org/10.1039/c4cp90074j

    Article  CAS  PubMed  Google Scholar 

  38. Artacho E, Anglada E, Diéguez O et al (2008) The SIESTA method; developments and applicability. J Phys Condens Matter 20:064208. https://doi.org/10.1088/0953-8984/20/6/064208

    Article  CAS  PubMed  Google Scholar 

  39. Soler JM, Artacho E, Gale JD et al (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779. https://doi.org/10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple (vol 77, pg 3865, 1996). Phys Rev Lett 78:1396–1396. https://doi.org/10.1103/PhysRevLett.78.1396

    Article  CAS  Google Scholar 

  41. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006. https://doi.org/10.1103/PhysRevB.43.1993

    Article  CAS  Google Scholar 

  42. Sánchez-Portal D, Junquera J, Paz Ó, Artacho E (2001) Numerical atomic orbitals for linear-scaling calculations. Phys Rev B—Condens Matter Mater Phys 64:1–9. https://doi.org/10.1103/PhysRevB.64.235111

    Article  CAS  Google Scholar 

  43. Cao X (2005) Ab initio studies on the electronic structure of FeOH. Chem Phys 311:203–208. https://doi.org/10.1016/j.chemphys.2004.09.037

    Article  CAS  Google Scholar 

  44. Seminario PPJM (1995) Modern density functional theory: a tool for chemistry, 1st edn, vol 2. Elsevier

  45. Seth SK (2018) The importance of CH···x (X = o, π) interaction of a new mixed ligand cu(ii) coordination polymer: structure, hirshfeld surface and theoretical studies. Curr Comput-Aided Drug Des 8:455. https://doi.org/10.3390/cryst8120455

    Article  CAS  Google Scholar 

  46. Sarkar R, Kundu TK (2019) Nonbonding interaction analyses on PVDF/[BMIM][BF 4 ] complex system in gas and solution phase. J Mol Model 25:131. https://doi.org/10.1007/s00894-019-4020-9

    Article  CAS  PubMed  Google Scholar 

  47. Koduru HK, Iliev MT, Kondamareddy KK et al (2016) Investigations on Poly (ethylene oxide) (PEO)—blend based solid polymer electrolytes for sodium ion batteries. J Phys Conf Ser 764:012006. https://doi.org/10.1088/1742-6596/764/1/012006

    Article  CAS  Google Scholar 

  48. Mogurampelly S, Borodin O, Ganesan V (2016) Computer simulations of ion transport in polymer electrolyte membranes. Annu Rev Chem Biomol Eng 7:349–371. https://doi.org/10.1146/annurev-chembioeng-080615-034655

    Article  PubMed  Google Scholar 

  49. Rohling RY, Tranca IC, Hensen EJM, Pidko EA (2019) Correlations between density-based bond orders and orbital-based bond energies for chemical bonding analysis. Journal of Physicsl Chemistry C 123:2843–2854. https://doi.org/10.1021/acs.jpcc.8b08934

    Article  CAS  Google Scholar 

  50. Reshak AH, Khan SA, Alahmed ZA (2014) Investigation of electronic structure and optical properties of MgAl2O4: DFT approach. Opt Mater (Amst) 37:322–326. https://doi.org/10.1016/j.optmat.2014.06.017

    Article  CAS  Google Scholar 

  51. Verma ML, Rao BK, Singh R et al (2017) Ab initio study of mechanical strength of solid polymer electrolyte (PEO)5LiClO4. Ionics (Kiel) 23:2715–2720. https://doi.org/10.1007/s11581-017-2025-x

    Article  CAS  Google Scholar 

  52. Gopinath A, Mohan R, Kollery A (2020) Polymer based solid complexes for electrolytes in sodium ion battery applications polymer based solid complexes for electrolytes in sodium ion battery applications. AIP Conf Proc 2287:020026. https://doi.org/10.1063/5.0029957

    Article  CAS  Google Scholar 

  53. Pham TA, Govoni M, Seidel R et al (2017) Electronic structure of aqueous solutions: bridging the gap between theory and experiments. Sci Adv 3:1–9. https://doi.org/10.1126/sciadv.1603210

    Article  CAS  Google Scholar 

  54. Grosso B (2014) Charge density from scratch to visualization. DOC PLAYER WEB http://phycomp.technion.ac.il/~sbgrosso/QE_charge_density/ddl_figures.tar

  55. Abraham JA, Pagare G, Sanyal SP (2015) Electronic structure, electronic charge density, and optical properties analysis of GdX 3 (X = In, Sn, Tl, and Pb) compounds: DFT calculations. Indian J Mater Sci 2015:1–11. https://doi.org/10.1155/2015/296095

    Article  Google Scholar 

  56. Sarkar R, Kundu TK (2018) Density functional theory studies on PVDF/ionic liquid composite systems. J Chem Sci 130:115. https://doi.org/10.1007/s12039-018-1522-4

    Article  CAS  Google Scholar 

  57. Rao BK, Verma ML (2016) First principle study of 0.75AgI:0.25AgCl: a density functional approach. Chem Phys Lett 661:157–160. https://doi.org/10.1016/j.cplett.2016.08.069

    Article  CAS  Google Scholar 

  58. Upma VML, Verma D (2017) First principle studies on electronic structure and charge density of potato starch. Ionics (Kiel) 23:2881–2886. https://doi.org/10.1007/s11581-017-2182-y

    Article  CAS  Google Scholar 

  59. Verma H, Rao BK, Verma ML, Chauhan J (2019) First principles study of breaking energy and mechanical strength of Kevlar-29. Bull Mater Sci 42:1–5. https://doi.org/10.1007/s12034-019-1747-y

    Article  CAS  Google Scholar 

  60. Arya A, Sharma AL (2018) Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J Mater Sci Mater Electron 29:17903–17920. https://doi.org/10.1007/s10854-018-9905-3

    Article  CAS  Google Scholar 

  61. Chaurasia SK, Shalu GAK et al (2015) Role of ionic liquid [BMIMPF6] in modifying the crystallization kinetics behavior of the polymer electrolyte PEO-LiClO4. RSC Adv 5:8263–8277. https://doi.org/10.1039/c4ra12951b

    Article  CAS  Google Scholar 

  62. Pritam AA, Sharma AL (2019) Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis. Ionics (Kiel) 26:745–766. https://doi.org/10.1007/s11581-019-03245-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support in the form of research initiation grant (No.- RIG/975/2018) provided by TEQIP (III), the Madan Mohan Malaviya University of Technology, to the authors is acknowledged. Fruitful discussion with Prof. Mohan Lal Verma and Dr Rachna Singh, Shri Shankaracharya Technical Campus Bhilai, CG is acknowledged. Also helpful discussion with my colleagues is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Kumar Gupta.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Gupta, A.K. & Pandey, B.K. First-principle study on ionic pair dissociation in PEO-PVP-NaClO4 blend for solid polymer electrolyte. Polym. Bull. 79, 4999–5018 (2022). https://doi.org/10.1007/s00289-021-03724-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03724-8

Keywords

Navigation