Skip to main content

Advertisement

Log in

Green synthesis of silver nanoparticle-embedded poly(methyl methacrylate-co-methacrylic acid) copolymer for fungal-free leathers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this present work, we focus on the synthesis of stable silver nanoparticles (Ag NPs) by bio-reduction of Ag+ to Ag0 using the aqueous extracts of the Nardostachys jatamansi (NJ) root. These synthesized green Ag NPs were further embedded in the copolymer poly(methyl methacrylate-co-methacrylic acid) via the emulsion copolymerization technique. The structural and optical properties of the synthesized Ag-copolymer nanocomposite have been investigated using ATR-IR, DLS and UV–Vis absorption spectroscopy techniques. In FT-IR, clearly observed axial stretching frequencies at 3449 (–N–H stretching amines), 1626 (–C=O, polyphenols), 1382 (–C–N), 1035 (–C–O) and 815 cm−1 (aromatic) indicated the presence of functional groups (alkaloids, flavonoids, and phenolic compounds) on silver nanoparticles, which could possibly act as reducing and stabilizing agents. The SEM images of the sample showed the spherical morphology of the synthesized green Ag NPs (~ 20–30 nm), which remained intact even after their immobilization on the copolymer matrix. Further, the wettability test using contact angle measurements revealed the hydrophobic properties of the samples, which is found to be slightly improved for Ag–copolymer nanocomposites (117.93°) as compared to the bare copolymer (110.37°). The antifungal activities of Ag NPs–copolymer nanocomposites were evaluated against several fungal species using the serial dilution method in different concentrations. The obtained results demonstrated that the developed Ag NPs–copolymer nanocomposite could be promising in developing the fungal-free leather materials and products. The aim of this work is to develop an antifungal-based nanocomposite for leather industries in order to get fungal-free leathers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Col Surf B Interface 27:313–318. https://doi.org/10.1016/S0927-7765(02)00174-1

    Article  CAS  Google Scholar 

  2. Jeyapriya M, Meenarathi B, Kannammal L, Palanikumar S, Anbarasan R (2015) Synthesis and characterization of nano Ag end capped L-cysteine bridged diblock copolymer. Chin J Polym Sci 33(10):1404–1420. https://doi.org/10.1007/s10118-015-1688-x

    Article  CAS  Google Scholar 

  3. Sahayaraj K, Rajesh S, Rathi JM (2012) Silver nanoparticles biosynthesis using marine alga padinapavonica (linn.) and its microbicidal activity. Digest J Nanomater Biostruct 7:1557–1567

    Google Scholar 

  4. Reiad NA, Abdel Salam OE, Abadir EF, Farid AH (2012) Green synthesis of antibacterial chitosan films loaded with silver nanoparticles. Chin J Polym Sci 31:984–993. https://doi.org/10.1007/s10118-013-1263-2

    Article  CAS  Google Scholar 

  5. Naheed A, Sharma S (2012) Green synthesis of silver nanoparticles using extracts of ananascomosus. Green Suistain Chem 2:141–147. https://doi.org/10.4236/gsc.2012.24020

    Article  CAS  Google Scholar 

  6. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett. 176:1–12. https://doi.org/10.1016/j.toxlet.2007.10.004

    Article  CAS  PubMed  Google Scholar 

  7. Glomm RW (2005) Functionalized nanoparticles for application in biotechnology. J Dispers Sci Technol 26:389–314. https://doi.org/10.1081/DIS-200052457

    Article  CAS  Google Scholar 

  8. Murugan P, Ramar P, Asit BM, Debasis S (2018) Polymer brush on surface with tunable hydrophilicity using SAM formation of zwitterionic 4-vinylpyridine-based polymer. New J Chem 42:2513–2519. https://doi.org/10.1039/C7NJ02971C

    Article  CAS  Google Scholar 

  9. Pandey S (2016) Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review. J Sci Adv Mater Devices 1:431–453. https://doi.org/10.1016/j.jsamd.2016.10.005

    Article  Google Scholar 

  10. Pandey S, Goswami GK, Nanda KK (2013) Nanocomposite based flexible ultrasensitive resistive gas sensor for chemical reactions studies. Sci Rep 3(1):1–6. https://doi.org/10.1038/srep02082

    Article  CAS  Google Scholar 

  11. Pandey S, Ramontja J (2016) Sodium alginate stabilized silver nanoparticles–silica nanohybrid and their antibacterial characteristics. Int J Biol Macromol 93(A):712–723. https://doi.org/10.1016/j.ijbiomac.2016.09.033

    Article  CAS  PubMed  Google Scholar 

  12. Pandey S, Goswami GK, Nanda KK (2012) Green synthesis of biopolymer–silver nanoparticle nanocomposite: an optical sensor for ammonia detection. Int J Biol Macromol 51(4):583–589. https://doi.org/10.1016/j.ijbiomac.2012.06.033

    Article  CAS  PubMed  Google Scholar 

  13. Maqusood A, Hisham AA, Majeed Khan MA, Ponmurugan K, Al-Dhabi NA (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater. https://doi.org/10.1155/2014/637858

    Article  Google Scholar 

  14. Singh P, Kim YJ, Singh H, Wang C, Hwang KH, Farh M, Yang DC (2015) Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int J Nanomed 10:2567–2577. https://doi.org/10.2147/IJN.S72313

    Article  CAS  Google Scholar 

  15. Varghese S, Kuriakose S, Jose S (2013) Antimicrobial activity of carbon nanoparticles isolated from natural sources against pathogenic gram-negative and gram-positive bacteria. J Nanosci. https://doi.org/10.1155/2013/457865

    Article  Google Scholar 

  16. Sahu R, Dhongade HJ, Pandey A, Sahu P, Sahu V, Patel D, Kashyap P (2016) Medicinal properties of Nardostachys jatamansi a review. Orient J Chem 32(2):859–866. https://doi.org/10.13005/ojc/320211

    Article  CAS  Google Scholar 

  17. Jha SV, Bhagwat AM, Pandita NS (2012) Pharmacognostic and phytochemical studies on the rhizome of Nardostachys jatamansi DC using different extracts. Pharmacognosy Journal 4(33):16–22. https://doi.org/10.5530/pj.2012.33.3

    Article  Google Scholar 

  18. Ghassemi-Dehkordi N, Sajjadi E, Shafiei-Koojani H, Keshvari M, Hoseini SM (2014) Identification of chemical compounds of Nardostachys Jatamansi essence available in Iran. J HerbMed Pharmacol 3(2):83–86

    Google Scholar 

  19. Disket J, Mann S, Gupta RK (2012) A review on spikenard (Nardostachys jatamansi DC.)—an ‘endangered’essential herb of India. Int J Pharm Chem 2:52–60. https://doi.org/10.7439/ijpc.v2i3.716

    Article  Google Scholar 

  20. Diez-Pena E, Quijada-Garrido I, Frutos P, Barrales-Rienda JM (2002) Thermal properties of cross-linked poly (N-isopropylacrylamide)[P (N-iPAAm)], poly (methacrylic acid)[P (MAA)], their random copolymers [P (N-iPAAm-co-MAA)], and sequential interpenetrating polymer networks (IPNs). Macromolecules 35(7):2667–2675. https://doi.org/10.1021/ma011520x

    Article  CAS  Google Scholar 

  21. Teng H, Koike K, Zhou D, Satoh Z, Koike Y, Okamoto Y (2009) High glass transition temperatures of poly (methyl methacrylate) prepared by free radical initiators. J Polym Sci Part A Polym Chem 47(1):315–317. https://doi.org/10.1002/pola.23154

    Article  CAS  Google Scholar 

  22. Onur Y, Catalina NC, Gürbüz G, Cornelia V (2011) Rheological behaviour of acrylate/montmorillonitenanocomposite latexes and their application in leather finishing as binders. Prog Org Coat 70:52–58. https://doi.org/10.1016/j.porgcoat.2010.10.001

    Article  CAS  Google Scholar 

  23. Anirudhan TS, Tharun AR, Rajeena SR (2011) Investigation on poly (methacrylic acid)-grafted cellulose/bentonite superabsorbent composite: synthesis, characterization, and adsorption characteristics of bovine serum albumin. Ind Eng Chem Res 50:1866–1874. https://doi.org/10.1021/ie101918m

    Article  CAS  Google Scholar 

  24. Li S, Wei D, Lui Z, Zhang S, Xinming Z (1989) Investigations of the mechanism of the reactions of acrylic resin tannage with chrome leather. J Am Leather Chem Assoc 84:79–85

    CAS  Google Scholar 

  25. Ma J, Hu J, Zhang Z, Liu L (2006) The acrylic resin leather coating agent modified by Nano-SiO2. J Compos Mater 40(24):2189–2201. https://doi.org/10.1177/0021998306062314

    Article  CAS  Google Scholar 

  26. Hu J, Ma J, Deng W (2008) Synthesis of alkali-soluble copolymer (butyl acrylate/acrylic acid) and its application in leather finishing agent. Eur Polym J 44(8):2695–2701. https://doi.org/10.1016/j.eurpolymj.2008.05.016

    Article  CAS  Google Scholar 

  27. Kong H, Jang J (2008) Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24:2051–2056. https://doi.org/10.1021/la703085e

    Article  CAS  PubMed  Google Scholar 

  28. Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH, Youngs WJ (2005) Silver (I)− imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127(7):2285–2291. https://doi.org/10.1021/ja040226s

    Article  CAS  PubMed  Google Scholar 

  29. Klueh U, Wagner V, Kelly S, Johnson A, Bryers JD (2002) Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res 53:621–631. https://doi.org/10.1002/1097-4636(2000)53:6%3c621::AID-JBM2%3e3.0.CO;2-Q

    Article  Google Scholar 

  30. Kaliamurthi S, Selvaraj G, Elibol Z, Demir A (2019) The relationship between Chlorella sp. and zinc oxide nanoparticles: changes in biochemical, oxygen evolution, and lipid production ability. Process Biochem 85:43–50

    Article  CAS  Google Scholar 

  31. Shekh MI, Patel NN, Patel KP, Patel RM, Ray A (2017) Nano silver-embedded electrospun nanofiber of poly (4-chloro-3-methylphenyl methacrylate): use as water sanitizer. Environ Sci Pollut Res 24(6):5701–5716. https://doi.org/10.1007/s11356-016-8254-0

    Article  CAS  Google Scholar 

  32. Shekh MI, Patel DM, Patel KP et al (2016) Electrospun nanofibers of poly(NPEMA-co.-CMPMA): used as Heavy metal ion remover and water sanitizer. Fibers Polym 17:358–370. https://doi.org/10.1007/s12221-016-5861-9

    Article  CAS  Google Scholar 

  33. Patel NN, Shekh MI, Patel KP, Patel RM (2020) Electrospun nano silver embedded polystyrene composite nanofiber as a possible water disinfectant. Indian J Chem Sect A (IJCA), 58(2), 288–293. http://nopr.niscair.res.in/handle/123456789/45793

  34. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3(7):482–488. https://doi.org/10.1038/nmat1152

    Article  CAS  PubMed  Google Scholar 

  35. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Hwang J-S (2013) Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:981–990. https://doi.org/10.1007/s00436-012-3220-3

    Article  PubMed  Google Scholar 

  36. Ahmed S, Saifullah AM, Swami BL, Ikram S (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Rad Res Appl Sci 9(1):1–7. https://doi.org/10.1016/j.jrras.2015.06.006

    Article  CAS  Google Scholar 

  37. Pietrzak K, Twarużek M, Czyżowska A, Kosicki R, Gutarowska B (2015) Influence of silver nanoparticles on metabolism and toxicity of moulds. Acta Biochim Pol 62(4):851–857

    Article  CAS  Google Scholar 

  38. Muthuraman MS, Nithya S, Christena LR, Vadivel V, Subramanian NS, Anthony SP (2019) Green synthesis of silver nanoparticles using Nardostachys jatamansi and evaluation of its anti-biofilm effect against classical colonizers. Microbial Pathog 126:1–5. https://doi.org/10.1016/j.micpath.2018.10.024

    Article  CAS  Google Scholar 

  39. Pandey S, De Klerk C, Kim J, Kang M, Fosso-Kankeu E (2020) Eco friendly approach for synthesis, characterization and biological activities of milk protein stabilized silver nanoparticles. Polymers 12:1418

    Article  CAS  Google Scholar 

  40. Fatimah I (2016) Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J Adv Res 7(6):961–969. https://doi.org/10.1016/j.jare.2016.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Du CH, Ma XM, Wu CJ, Cai MQ, Hu MX, Wang T (2015) Polymerizable ionic liquid copolymer P (MMA-co-BVIm-Br) and its effect on the surface wettability of PVDF blend membranes. Chin J Polym Sci 33(6):857–868. https://doi.org/10.1007/s10118-015-1634-y

    Article  CAS  Google Scholar 

  42. Shameli K, Ahmad M, Zamanian A, Sangpour P, Parvaneh Shabanzadeh P, Abdollahi Y, Mohsen Z (2012) Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int J Nanomed 7:5603–5610. https://doi.org/10.2147/IJN.S36786

    Article  CAS  Google Scholar 

  43. Shekh MI, Patel KP, Patel RM (2018) Electrospun ZnO nanoparticles doped core-sheath nanofibers: characterization and antimicrobial properties. J Polym Environ 26:4376–4387. https://doi.org/10.1007/s10924-018-1310-8

    Article  CAS  Google Scholar 

  44. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009) Antifungal activity and mode of action of silver nanoparticles on Candida albicans. Biometals 22(2):235–242. https://doi.org/10.1007/s10534-008-9159-2

    Article  CAS  PubMed  Google Scholar 

  45. Pandey S, Do JY, Kim J, Kang M (2020) Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst. Carbohydr Polym 230:115597. https://doi.org/10.1016/j.carbpol.2019.115597

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author (SP) acknowledges the University Grants Commission (UGC), India, Grant No.: RGNF-2015-17-SC-TAM-14030 for the funding support through the National Fellowship. The author (AM) acknowledges the Department of Science and Technology [DST/INSPIRE/04/2018/001762] for the Inspire Faculty program. We also thank Rev. Dr. A. Thomas SJ, Principal, and Dr. R. Ravindhran, Head of the Department, Plant Biology and Biotechnology, Loyola College, Chennai, India, for their support and encouragements to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Jeyajothi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 930 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, S., Murali, A., Preeth, D.R. et al. Green synthesis of silver nanoparticle-embedded poly(methyl methacrylate-co-methacrylic acid) copolymer for fungal-free leathers. Polym. Bull. 79, 4607–4626 (2022). https://doi.org/10.1007/s00289-021-03714-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03714-w

Keywords

Navigation