Skip to main content
Log in

One-pot in situ synthesis of poly(3-hexylthiophene)/vanadium oxide composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(3-hexylthiophene)/vanadium oxide composites were synthesized via a one-pot in situ method using oxidative polymerization and the non-hydrolytic sol–gel method. Reactions were performed at room temperature in two different solvent systems, chloroform and an 18:2 ratio of dichloromethane:nitrobenzene. Two different vanadium precursors, VCl3 and VOCl3, were investigated. Composites were characterized using matrix-assisted laser desorption/ionization mass spectrometry, powder X-ray diffraction, energy-dispersive X-ray spectroscopy coupled with scanning electron microscopy, thermal analysis, and conductivity measurements. Molecular weights varied with solvent system and vanadium precursor, generally producing masses lower than pure polymer in each respective solvent system. Samples synthesized with VOCl3 produced higher molecular weight composites than their VCl3 counterparts; however, composites synthesized with the VCl3 precursor showed superior V retention. Conductivity measurements indicated improved performance in all composites with respect to their pure polymer counterparts, with improvements up to two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ludwigs S (2014) P3HT revisited—from molecular scale to solar cell devices preface, vol 265. Springer, Verlag Berlin, Berlin

    Google Scholar 

  2. Lee CS, Yin W, Holt AP, Sangoro JR, Sokolov AP, Dadmun MD (2015) Rapid and facile formation of P3HT organogels via spin coating: tuning functional properties of organic electronic thin films. Adv Funct Mater 25(36):5848–5857. https://doi.org/10.1002/adfm.201501707

    Article  CAS  Google Scholar 

  3. Beek WJE, Wienk MM, Janssen RAJ (2006) Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv Funct Mater 16(8):1112–1116. https://doi.org/10.1002/adfm.200500573

    Article  CAS  Google Scholar 

  4. Ikram M, Murray R, Imran M, Ali S, Shah SI (2016) Enhanced performance of P3HT/(PCBM:ZnO:TiO2) blend based hybrid organic solar cells. Mater Res Bull 75:35–40. https://doi.org/10.1016/j.materresbull.2015.11.031

    Article  CAS  Google Scholar 

  5. Zeng TW, Ho CC, Tu YC, Tu GY, Wang LY, Su WF (2011) Correlating interface heterostructure, charge recombination, and device efficiency of poly (3-hexyl thiophene)/TiO2 nanorod solar cell. Langmuir 27(24):15255–15260

    Article  CAS  Google Scholar 

  6. Kim KD, Lim DC, Hu J, Kwon JD, Jeong MG, Seo HO, Lee JY, Jang KY, Lim JH, Lee KH, Jeong Y, Kim YD, Cho S (2013) Surface modification of a ZnO electron-collecting layer using atomic layer deposition to fabricate high-performing inverted organic photovoltaics. ACS Appl Mater Interfaces 5(17):8718–8723. https://doi.org/10.1021/am402403x

    Article  CAS  PubMed  Google Scholar 

  7. Xiong J, Yang BC, Yuan J, Fan L, Hua X, Xie HP, Lyu L, Cui RL, Zou YP, Zhou CH, Niu DM, Gao YL, Yang JL (2015) Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer. Org Electron 17:253–261. https://doi.org/10.1016/j.orgel.2014.12.023

    Article  CAS  Google Scholar 

  8. Lee DY, Cho SP, Na SI, Kim SS (2017) ITO-free polymer solar cells with vanadium oxide hole transport layer. J Ind Eng Chem 45:1–4. https://doi.org/10.1016/j.jiec.2016.09.010

    Article  CAS  Google Scholar 

  9. Arbab E, Mola GT (2016) V2O5 thin film deposition for application in organic solar cells. Appl Phys A. https://doi.org/10.1007/s00339-016-9966-1

    Article  Google Scholar 

  10. Lima FAS, Beliatis MJ, Roth B, Andersen TR, Bortoti A, Reyna Y, Castro E, Vasconcelos IF, Gevorgyan SA, Krebs FC, Lira-Cantu M (2016) Flexible ITO-free organic solar cells applying aqueous solution-processed V2O5 hole transport layer: an outdoor stability study. Appl Mater 4(2):7. https://doi.org/10.1063/1.4942638

    Article  CAS  Google Scholar 

  11. Wang ZL, Xu D, Wang LM, Zhang XB (2012) Facile and low-cost synthesis of large-area pure V2O5 nanosheets for high-capacity and high-rate lithium storage over a wide temperature range. ChemPlusChem 77(2):124–128. https://doi.org/10.1002/cplu.201100051

    Article  CAS  Google Scholar 

  12. Chen CP, Chen YD, Chuang SC (2011) High-performance and highly durable inverted organic photovoltaics embedding solution-processable vanadium oxides as an interfacial hole-transporting layer. Adv Mat. https://doi.org/10.1002/adma.201102142

    Article  Google Scholar 

  13. Zilberberg K, Trost S, Meyer J, Kahn A, Behrendt A, Lutzenkirchen-Hecht D, Frahm R, Riedl T (2011) Inverted organic solar cells with sol-gel processed high work-function vanadium oxide hole-extraction layers. Adv Funct Mater 21(24):4776–4783. https://doi.org/10.1002/adfm.201101402

    Article  CAS  Google Scholar 

  14. Alsulami A, Griffin J, Alqurashi R, Yi HN, Iraqi A, Lidzey D, Buckley A (2016) Thermally stable solution processed vanadium oxide as a hole extraction layer in organic solar cells. Materials 9(4):235. https://doi.org/10.3390/ma9040235

    Article  CAS  PubMed Central  Google Scholar 

  15. Wang HQ, Li N, Guldal NS, Brabec CJ (2012) Nanocrystal V2O5 thin film as hole-extraction layer in normal architecture organic solar cells. Org Electron 13(12):3014–3021. https://doi.org/10.1016/j.orgel.2012.08.007

    Article  CAS  Google Scholar 

  16. Yamamoto J, Furukawa Y (2016) Raman study of the interaction between regioregular poly(3-hexylthiophene) (P3HT) and transition-metal oxides MoO3, V2O5, and WO3 in polymer solar cells. Chem Phys Lett 644:267–270. https://doi.org/10.1016/j.cplett.2015.12.012

    Article  CAS  Google Scholar 

  17. Fan X, Zhang M, Wang X, Yang F, Meng X (2013) Recent progress in organic–inorganic hybrid solar cells. J Mater Chem A 1(31):8694–8709

    Article  CAS  Google Scholar 

  18. Osterloh FE, Holmes MA, Zhao J, Chang LL, Kawula S, Roehling JD, Moule AJ (2014) P3HT:PCBM bulk-heterojunctions: observing interfacial and charge transfer states with surface photovoltage spectroscopy. J Phys Chem C 118(27):14723–14731. https://doi.org/10.1021/jp500226u

    Article  CAS  Google Scholar 

  19. Li G, Shrotriya V, Huang JS, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868. https://doi.org/10.1038/nmat1500

    Article  CAS  Google Scholar 

  20. Said AJ, Poize G, Martini C, Ferry D, Marine W, Giorgio S, Fages F, Hocq J, Bouclé J, Nelson J, Durrant JR, Ackermann J (2010) Hybrid bulk heterojunction solar cells based on P3HT and porphyrin-modified ZnO nanorods. J Phys Chem C 114(25):11273–11278. https://doi.org/10.1021/jp911125w

    Article  CAS  Google Scholar 

  21. Cuentas-Gallegos AK, Gomez-Romero P (2005) In-situ synthesis of polypyrrole-MnO2-x nanocomposite hybrids. J New Mat Elect Syst 8(3):181–188

    CAS  Google Scholar 

  22. Njagi J, Andreescu S (2007) Stable enzyme biosensors based on chemically synthesized Au–polypyrrole nanocomposites. Biosens Bioelectron 23(2):168–175. https://doi.org/10.1016/j.bios.2007.03.028

    Article  CAS  PubMed  Google Scholar 

  23. Zang J, Li X (2011) In situ synthesis of ultrafine β-MnO2/polypyrrole nanorod composites for high-performance supercapacitors. J Mater Chem 21:10965–10969. https://doi.org/10.1039/C1JM11491C

    Article  CAS  Google Scholar 

  24. Lin YM, Li DZ, Hu JH, Xiao GC, Wang JX, Li WJ, Fu XZ (2012) Highly efficient photocatalytic degradation of organic pollutants by pani-modified TiO2 composite. J Phys Chem C 116(9):5764–5772. https://doi.org/10.1021/jp211222w

    Article  CAS  Google Scholar 

  25. Chariar V, Tripathi AK, Goel TC, Mendiratta RG, Pillai PKC, Dutta K (1996) Characterization of transparent polyimide:PLZT (8/65/35) composite films prepared by a modified sol-gel method. Ferroelectrics 184:117–125. https://doi.org/10.1080/00150199608230251

    Article  CAS  Google Scholar 

  26. Ye DD, Xiao CY, Qi RR, Jiang PK (2012) Preparation and characterization of PLA/ZnS nanocomposites via an in situ solvothermal process. J Appl Polym Sci 125:E117–E124. https://doi.org/10.1002/app.36718

    Article  CAS  Google Scholar 

  27. McCullough RD (1998) The chemistry of conducting polythiophenes. Adv Mater 10(2):93. https://doi.org/10.1002/(SICI)1521-4095(199801)10-2

    Article  CAS  Google Scholar 

  28. Downard AJ, Pletcher D (1986) A study of the conditions for the electrodeposition of polythiophen in acetonitrile. J Electroanal Chem Inter Electrochem 206(1):147–152. https://doi.org/10.1016/0022-0728(86)90264-0

    Article  CAS  Google Scholar 

  29. Vioux A (1997) Nonhydrolytic sol-gel routes to oxides. Chem Mat 9(11):2292–2299. https://doi.org/10.1021/cm970322a

    Article  CAS  Google Scholar 

  30. Styskalik A, Skoda D, Barnes CE, Pinkas J (2017) The power of non-hydrolytic sol-gel chemistry: a review. Catalysts 7(6):168. https://doi.org/10.3390/catal7060168

    Article  CAS  Google Scholar 

  31. Gadient J, Livingstone V, Klink D, Grice CR, Lind C (2019) Low temperature synthesis of nanocrystalline V2O5 using the non-hydrolytic sol–gel method. J Sol-Gel Sci Techn 89(3):663–671. https://doi.org/10.1007/s10971-019-04926-3

    Article  CAS  Google Scholar 

  32. Gadient J, Groch R, Lind C (2017) An in depth study of solvent effects on yield and average molecular weight in poly(3-hexylthiophene). Polymer 115:21–27. https://doi.org/10.1016/j.polymer.2017.03.014

    Article  CAS  Google Scholar 

  33. Gadient J (2017) One pot in-situ synthesis of poly(3-hexylthiophene)/metal oxide composites. Ph.D. Thesis, The University of Toledo, Department of Chemistry and Biochemistry

  34. Gieseking B, Jaeck B, Preis E, Jung S, Forster M, Scherf U, Deibel C, Dyakonov V (2012) Excitation dynamics in low band gap donor-acceptor copolymers and blends. Adv Energy Mater. https://doi.org/10.1002/aenm.201200304

    Article  Google Scholar 

  35. Acosta S, Corriu RJP, Leclercq D, Lefèvre P, Mutin PH, Vioux A (1994) Preparation of alumina gels by a non-hydrolytic sol-gel processing method. J Non-Cryst Solids 170(3):234–242. https://doi.org/10.1016/0022-3093(94)90052-3

    Article  CAS  Google Scholar 

  36. Daltonics B (2011) flexAnalysis 3.4 user manual. https://researchservices.pitt.edu/sites/default/files/flexAnalysis%20User%20Manual.pdf. Accessed 1/3/2020 2020

  37. He J, Su ZJ, Yan B, Xiang L, Wang YH (2007) The effects of different side groups on the properties of polythiophene. J Macromol Sci Part A-Pure Appl Chem 44(7–9):989–993. https://doi.org/10.1080/10601320701424321

    Article  CAS  Google Scholar 

  38. Karim MR (2012) Synthesis and characterizations of poly(3-hexylthiophene) and modified carbon nanotube composites. J Nanomater 2012:1–8. https://doi.org/10.1155/2012/174353

    Article  CAS  Google Scholar 

  39. Obrzut J, Page KA (2009) Electrical conductivity and relaxation in poly(3-hexylthiophene). Phys Rev B 80(19):195211. https://doi.org/10.1103/PhysRevB.80.195211

    Article  CAS  Google Scholar 

  40. van de Leur RHM, de Ruiter B, Breen J (1993) Dielectrical and dynamic mechanical properties of three poly(3-N-Alkaylthiophene)s. Synth Met 57(2):4956–4961. https://doi.org/10.1016/0379-6779(93)90845-N

    Article  Google Scholar 

  41. Kuila BK, Nandi AK (2004) Physical, mechanical, and conductivity properties of poly(3-hexylthiophene)−montmorillonite clay nanocomposites produced by the solvent casting method. Macromolecules 37(23):8577–8584. https://doi.org/10.1021/ma0490496

    Article  CAS  Google Scholar 

  42. Fukumoto H, Omori Y, Yamamoto T (2013) Effects of solvent and temperature on regioregularity of poly(3-hexylthiophene-2,5-diyl)prepared by chemical oxidative polymerization. Polym J 45(4):462–465. https://doi.org/10.1038/pj.2012.152

    Article  CAS  Google Scholar 

  43. Marrocchi A, Lanari D, Facchetti A, Vaccaro L (2012) Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells. Energ Environ Sci 5(9):8457–8474. https://doi.org/10.1039/c2ee22129b

    Article  CAS  Google Scholar 

  44. Mao HY, Xu B, Holdcroft S (1993) Synthesis and structure property relationships of regioirregular poly(3-hexylthiophenes). Macromolecules 26(5):1163–1169. https://doi.org/10.1021/ma00057a041

    Article  CAS  Google Scholar 

  45. Gallazzi MC, Castellani L, Zerbi G, Sozzani P (1991) Regiospecificity and structureal properties of polyalkyl thiophenes. Synth Met 41(1–2):495–498. https://doi.org/10.1016/0379-6779(91)91116-r

    Article  CAS  Google Scholar 

Download references

Funding

University of Toledo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cora Lind.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9806 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Livingstone, V., Gadient, J., Do, L. et al. One-pot in situ synthesis of poly(3-hexylthiophene)/vanadium oxide composites. Polym. Bull. 79, 4417–4439 (2022). https://doi.org/10.1007/s00289-021-03709-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03709-7

Navigation