Skip to main content
Log in

Visible light-induced photocatalytic and antibacterial activity of TiO2/polyaniline-kapok fiber nanocomposite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Anatase TiO2 nanoparticles with an average crystallite size of around 6.06 nm were successfully immobilized on the surface of polyaniline-coated kapok fiber (PANI-KpF) via hydrothermal reaction. The photocatalytic activity of the TiO2/PANI-KpF nanocomposite was studied under visible light using methyl orange (MO) and Cr(VI) as model pollutants. Photodegradation of MO was achieved using nanocomposites prepared with 0.5 and 1.0 mL titanium isopropoxide (TTIP) with removal efficiencies of about 87.4 and 76.8%, respectively. These are about 13 and 18% higher than the removal efficiencies under dark conditions. On the other hand, visible light-induced photo-reduction of Cr(VI) was carried out in the presence of isopropanol (IPA) as a hole scavenger, with 100% removal efficiency. Without IPA, Cr(VI) was removed by adsorption. The TiO2/PANI-KpF also showed antibacterial activity against E. coli bacteria under visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4(70):37003–37026

    Article  CAS  Google Scholar 

  2. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377

    Article  CAS  Google Scholar 

  3. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications”. Appl Catal B Environ 125:331–349

    Article  CAS  Google Scholar 

  4. Hayamun M, Raziq F, Khan A, Luo W (2018) Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chem Lett Rev 11(2):86–102

    Article  CAS  Google Scholar 

  5. Bai Y, Mora-Sero I, Angelis FD, Bisquert J, Wang P (2014) Titanium dioxide nanomaterials for photovoltaic applications. Am Chem Soc Chem Rev 114:10095–10130

    Article  CAS  Google Scholar 

  6. Li X, Wang D, Cheng G, Luo Q, An J, Wang Y (2008) Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl Catal B Environ 81:267–273

    Article  CAS  Google Scholar 

  7. Bhatia V, Dhir A (2016) Transition metal doped TiO2 mediated photocatalytic degradation of anti-inflammatory drug under solar irradiations. J Environ Chem Eng 4:1267–1273

    Article  CAS  Google Scholar 

  8. Tseng LT, Luo X, Bao N, Ding J, Li S, Yi J (2016) “Structures and properties of transition-metal-doped TiO2 nanorods. Mater Lett 170:142–146

    Article  CAS  Google Scholar 

  9. Li X, Zhuang Z, Li W, Pan H (2012) Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-loaded mesoporous TiO2. Appl Catal A Gen 429:31–38

    Article  CAS  Google Scholar 

  10. Gomes JF, Lopes A, Bednarczyk K, Gmurek M, Stelmachowski M, ZaleskaMedynska A, Quinta-Ferreira ME, Costa R, Quinta-Ferreira RM, Martins RC (2018) Effects of noble metals (Ag, Pd, Pt) loading over the efficiency of TiO2 during photocatalytic ozonation on the toxicity of parabens. Chemengineering 2(10):4

    Article  CAS  Google Scholar 

  11. Szkoda M, Siuzdak K, Lisowska-Oleksiak A (2016) Non-metal doped TiO2 nanotube arrays for high efficiency photocatalytic decomposition of organic species in water. Phys E 84:141–145

    Article  CAS  Google Scholar 

  12. El-Sheikh SM, Zhang G, El-Hosainy HM, Ismail AA, O’Shea KE, Falaras P, Kontos AG, Dionysiou DD (2014) High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation. J Hazard Mater 280:723–733

    Article  CAS  PubMed  Google Scholar 

  13. Kubacka A, Caudillo-Flores U, Barba-Nieto I, Fernández-García M (2021) Towards full-spectrum photocatalysis: Successful approaches and materials. Appl Catal A Gen. https://doi.org/10.1016/j.apcata.2020.117966

    Article  Google Scholar 

  14. Wang Z, Lang X (2018) Visible light photocatalysis of dye-sensitized TiO2: the selective aerobic oxidation of amines to imines. Appl Catal B Environ 224:404–409

    Article  CAS  Google Scholar 

  15. Choi SK, Yang HS, Kim JH, Park H (2012) Organic dye-sensitized TiO2 as a versatile photocatalyst for solar hydrogen and environmental remediation. Appl Catal B Environ 121:206–213

    Article  CAS  Google Scholar 

  16. Neves MC, Nogueira JMF, Trindade T, Mendonca MH, Pereira MI, Monteiro OC (2009) Photosensitization of TiO2 by Ag2S and its catalytic activity on phenol photodegradation. J Photochem Photobiol A Chem 204:168–173

    Article  CAS  Google Scholar 

  17. Chen H, Li W, Liu H, Zhu L (2011) Performance enhancement of CdS-sensitized TiO2 mesoporous electrode with two different sizes of CdS nanoparticles. Microp Mesop Mater 138:235–238

    Article  CAS  Google Scholar 

  18. Zainudin SNF, Markom M, Abdullah H, Adami R, Tasirin SM (2013) Optimized synthesis and photovoltaic performance of TiO2 nanoparticles for dye-sensitized solar cell. Particuology 11:753–759

    Article  CAS  Google Scholar 

  19. Sanjay P, Deepa K, Madhavan J, Senthil S (2018) Performance of TiO2 based dye-sensitized solar cells fabricated with dye extracted from leaves of Peltophorum pterocarpum and Acalypha amentacea as sensitizer. Mater Lett 219:158–162

    Article  CAS  Google Scholar 

  20. Peng B, Jungmann G, Jager C, Haarer D, Schmidt HW, Thelakkat M (2004) Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells. Coord Chem Rev 248(13–14):1479–1489

    Article  CAS  Google Scholar 

  21. Oku T, Kakuta N, Kobayashi K, Suzuki A, Kikuchi K (2011) Fabrication and characterization of TiO2-based dye-sensitized solar cells. Prog Natl Sci Mater Int 21(2):122–126

    Article  Google Scholar 

  22. Pei D, Luan J (2012) Development of visible light-responsive sensitized photocatalysts. Int J Photoenergy 2012:262831

    Article  CAS  Google Scholar 

  23. Deng Y, Tang L, Zeng G, Dong H, Yan M, Wang J, Hu W, Wang J, Zhou Y, Tang J (2016) Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO2 microsphere. Appl Surf Sci 387:882–893

    Article  CAS  Google Scholar 

  24. Deng F, Li Y, Luo X, Yang L, Tu X (2013) Preparation of conductive polypyrrole/TiO2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation. Coll Surf A Physicochem Eng Asp 395:183–189

    Article  CAS  Google Scholar 

  25. Boeva ZA, Sergeyev VG (2014) Polyaniline: synthesis, properties, and application. Polym Sci C 56(1):144–153

    CAS  Google Scholar 

  26. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810

    Article  CAS  Google Scholar 

  27. Kwon O, McKee ML (2000) Calculations of band gaps in polyaniline from theoretical studies of oligomers. J Phys Chem B 104:1686–1694

    Article  CAS  Google Scholar 

  28. Ahmad I, Kan CW (2017) Visible-light-driven, dye-sensitized TiO2 photo-catalyst for self-cleaning cotton fabrics. Coatings 7:192

    Article  CAS  Google Scholar 

  29. Morsi RE, Elsabee MZ (2015) Polyaniline nanotubes: mercury and competitive heavy metals uptake. Am J Polym Sci 5(1):10–17

    Google Scholar 

  30. Zheng YA, Liu Y, Wang AQ (2012) Kapok fiber oriented polyaniline for removal of sulfonated dyes. Ind Eng Chem Res 51(30):10079–10087

    Article  CAS  Google Scholar 

  31. Herrera MU, Futalan CM, Gapusan R, Balela MDL (2018) Removal of methyl orange and copper (II) ions from aqueous solution using polyaniline-coated kapok (Ceiba pentandra) fibers. Wat Sci Tech 78:1137–1147

    Article  CAS  Google Scholar 

  32. Gapusan RB, Balela MDL (2020) Adsorption of anionic methyl orange dye and lead(II) heavy metal ion by polyaniline-kapok fiber nanocomposite. Mater Chem Phys 243:122682

    Article  CAS  Google Scholar 

  33. Lacuesta AC, Herrera MU, Manalo R, Balela MDL (2018) Fabrication of kapok paper-zinc oxide-polyaniline hydrid nanocomposite for methyl orange removal. Surf Coatings Tech 350:971–976

    Article  CAS  Google Scholar 

  34. Li YF, Liu ZP (2011) Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings. J Am Chem Soc 133:15743–15752

    Article  CAS  PubMed  Google Scholar 

  35. Cabello-Alvarado CJ, Quiñones-Jurado ZV, Cruz-Delgado VJ, Avila-Orta CA (2020) Pigmentation and degradative activity of TiO2 on polyethylene films using Masterbatches fabricated using variable-frequency ultrasound-assisted melt-extrusion. Materials 13(17):3855

    Article  CAS  PubMed Central  Google Scholar 

  36. Chauhan I, Mohanty P (2014) Immobilization of titania nanoparticles on the surface of cellulose fibres by a facile single step hydrothermal method and study of their photocatalytic and antibacterial activities. R Soc Chem Adv 4:57885–57890

    CAS  Google Scholar 

  37. Andrade-Guel M, Díaz-Jiménez L, Cortés-Hernández D, Cabello-Alvarado C, Ávila-Orta C, Bartolo-Pérez P, Gamero-Melo P (2019) Microwave assisted sol-gel synthesis of titanium dioxide using hydrochloric and acetic acid as catalysts. Boletín de la Sociedad Española de Cerámica y Vidrio 58(4):171–177

    Article  CAS  Google Scholar 

  38. Endrodi B, Kecsenovity E, Rajeshwar K, Janaky C (2018) One-step electrodeposition of nanocrystalline TiO2 films with enhanced photoelectrochemical performance and charge storage”. ACS Appl Energy Mater 1:851–858

    Article  CAS  Google Scholar 

  39. He F, Ma F, Li T, Li G (2013) Solvothermal synthesis of N-doped TiO2 nanoparticles using different nitrogen sources, and their photocatalytic activity for degradation of benzene. Chin J Catal 34:2263–2270

    Article  CAS  Google Scholar 

  40. Lee H, Song MY, Jurng J, Park YK (2011) The synthesis and coating process of TiO2 nanoparticles using CVD process. Powder Technol 214:64–68

    Article  CAS  Google Scholar 

  41. Zhang H, Yan H, Mao N (2014) Functional modification with TiO2 nanoparticles and simultaneously dyeing of wool fibers in a one-pot hydrothermal process. Ind Eng Chem Res 53:2030–2041

    Article  CAS  Google Scholar 

  42. El-Roz M, Haidar Z, Lakiss L, Toufaily J, Thibault-Starzyk F (2013) Immobilization of TiO2 nanoparticles on natural Luffa cylindrical fibers for photocatalytic applications. R Soc Chem Adv 3:3438–3445

    CAS  Google Scholar 

  43. Shahrezaei M, Habibzadeh S, Babaluo AA, Hosseinkhani H, Haghighi M, Hasanzadeh A, Tahmasebpour R (2017) “Study of synthesis parameters and photocatalytic activity of TiO2 nanostructures. J Exp Nanosci 12(1):45–61

    Article  CAS  Google Scholar 

  44. Supothina S, Rattanakam R, Tawkaew S (2012) Hydrothermal synthesis and photocatalytic activity of anatase TiO2 nanofiber. J Nanosci Nanotechnol 12:4998–5003

    Article  CAS  PubMed  Google Scholar 

  45. Arguelles KE, Herrera MU, Futalan CCM, Balela MDL (2017) Fabrication of polyaniline-coated kapok (Ceiba pentandra) fibers embedded with copper-based particles. IOP Conf Ser Mater Sci Eng 201:012042

    Article  Google Scholar 

  46. Agcaoili AR, Herrera MU, Futalan CM, Balela MDL (2017) Fabrication of polyacrylonitrile-coated kapok hollow microtubes for adsorption of methyl orange and Cu(II) ions in aqueous solution. J Taiwan Inst Chem Eng 78:359–359

    Article  CAS  Google Scholar 

  47. Osman E, Moriga T, Murai K, Rashid MWA, Manaf MEA, Horikawa T (2018) “Photocatalytic activity of nanostructured tubular TiO2 synthesized using kenaf fibers as a sacrificial template. Ind Crops Prod 113:210–216

    Article  CAS  Google Scholar 

  48. Liu X, Cui Y, Hao S, Chen H (2018) Influence of depositing nano-SiO2 particles on the surface microstructure and properties of jute fibers via in situ synthesis. Compos A 109:368–375

    Article  CAS  Google Scholar 

  49. Luo S, Chen S, Chen Y, Chen S, Ma N, Wu Q (2016) “Sisal fiber-based solid amine adsorbent and its kinetic adsorption behaviors for CO2. R Soc Chem Adv 6:72022–72029

    CAS  Google Scholar 

  50. Yang M, Liu W, Jiang C, He S, Xie Y, Wang Z (2018) Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process. Carbohyd Polym 197:75–82

    Article  CAS  Google Scholar 

  51. Zhang X, Duan C, Zhao N, Xiao H, Shi M (2010) Facile fabrication of large scale microtubes with a natural template-kapok fiber. Chin J Polym Sci 28(5):841–847

    Article  CAS  Google Scholar 

  52. Yang Z, Yan J, Wang F (2018) Pore structure of kapok fiber. Cellulose 25(6):3219–3227

    Article  CAS  Google Scholar 

  53. Meiwu S, Hong X, Weidong Y (2010) The fine structure of the kapok fiber. Text Res J 80(2):159–165

    Article  CAS  Google Scholar 

  54. Lim TT, Huang X (2007) Evaluation of hydrophobicity/oleophilicity of kapok and its performance in oily water filtration: comparison of raw and solvent-treated fibers. Ind Crop Prod 26:125–134

    Article  CAS  Google Scholar 

  55. Sunmonu OK, Abdullahi D (1992) Characterization of fibres from the plant Ceiba pentandra. J Tex Inst 83(2):273–274

    Article  Google Scholar 

  56. Balela MDL, Intila NM, Salvanera SR (2019) Adsorptive removal of lead ions in aqueous solution by kapok-polyacrylonitrile nanocomposites. Mater Today Proc 17:672–678

    Article  CAS  Google Scholar 

  57. Fan H, Yu X, Long Y, Zhang X, Xiang H, Duan C, Zhao N, Zhang X, Xu J (2012) Preparation of kapok-polyacrylonitrile core-shell composite microtube and its application as gold nanoparticles carrier. Appl Surf Sci 258:2876–2882

    Article  CAS  Google Scholar 

  58. Liu Y, Wang J, Zheng Y, Wang A (2012) Adsorption of methylene blue by kapok fiber treated by sodium chlorite optimized with response surface methodology. Chem Eng J 184:248–255

    Article  CAS  Google Scholar 

  59. Ho YS, McKay G (1999) Pseudo-second order model for sorption process”. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  60. Sboui M, Nsib MF, Rayes A, Swaminathan M, Houas A (2017) TiO2-PANI/cork composite: a new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation. J Environ Sci 60:3–13

    Article  CAS  Google Scholar 

  61. Wang J, Zheng Y, Wang A (2012) Effect of kapok fiber treated with various solvents on oil absorbency. Ind Crops Prod 40:178–184

    Article  CAS  Google Scholar 

  62. Bono A, Ying PH, Yan FY, Muei CL, Sarbatly R, Krishnaiah D (2009) Synthesis and characterization of carboxymethyl cellulose from palm kernel cake. Adv Natl Appl Sci 3(1):5–11

    CAS  Google Scholar 

  63. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234

    Article  CAS  Google Scholar 

  64. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92

    Article  CAS  Google Scholar 

  65. Abdullah MA, Rahmah AU, Man Z (2010) Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. J Hazard Mater 177:683–691

    Article  CAS  PubMed  Google Scholar 

  66. Zheng Y, Wang W, Huang D, Wang A (2012) Kapok fiber oriented-polyaniline nanofibers for efficient Cr(VI) removal. Chem Eng J 191:154–161

    Article  CAS  Google Scholar 

  67. Yoon SB, Yoon EH, Kim KB (2011) Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications. J Power Sour 196:10791–10797

    Article  CAS  Google Scholar 

  68. Blinova NV, Stejskal J, Trchová M, Prokeš J, Omastová M (2007) Polyaniline and polypyrrole: a comparative study of the preparation. Eur Polym J 43:2331–2341

    Article  CAS  Google Scholar 

  69. Quillard S, Louarn G, Lefrant S (1994) Vibrational analysis of polyaniline: a comparative study of leucoemeraldine, emeraldine and pernigraniline bases. Phys Rev B 50(17):12496–12508

    Article  CAS  Google Scholar 

  70. Tang SJ, Wang AT, Lin SY, Huang KY, Yang CC, Yeh JM, Chiu KC (2011) Polymerization of aniline under various concentrations of APS and HCl”. Polym J 43:667–675

    Article  CAS  Google Scholar 

  71. Zhang J, Sun P, Jiang P, Guo Z, Liu W, Lu Q, Cao W (2019) Formation mechanism of TiO2 polymorphs under hydrothermal conditions based on structure evolution of [Ti(OH)h(H2O)6-h]4-h monomers. J Mater Chem C 7:5764–5771

    Article  CAS  Google Scholar 

  72. Draman SFS, Daik R, Latif FA, El-Sheikh SM (2014) Characterization and thermal decomposition kinetics of kapok (Ceiba pentandra L.)-based cellulose. BioResources 9(1):8–23

    Google Scholar 

  73. Cao Y, Xie L, Sun G, Su F, Kong QQ, Li F, Ma W, Shi J, Jian D, Lu C, Chen CM (2018) Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance. Sustain Energy Fuels 2:455–465

    Article  CAS  Google Scholar 

  74. Islam MS, Miran MS, Rahman MM, Mollah MYA, Susan MABH (2013) Polyaniline-silica composite materials: influence of silica content on the thermal and thermodynamic properties. J Nanostruct Polym Nanocompos 9(3):84–90

    Google Scholar 

  75. Zhang L, Liu P, Su Z (2006) Preparation of PANI-TiO2 nanocomposites and their solid-phase photocatalytic degradation. Polym Degrad Stabil 91:2213–2219

    Article  CAS  Google Scholar 

  76. Hubbe MA, Azizian S, Douben S (2019) Implication of apparent-second-order adsorption kinetics onto cellulosic materials: a review. BioResources 14(3):7582–7626

    Article  Google Scholar 

  77. Hidalgo D, Bocchini S, Fontana M, Saracco G, Hernandez S (2015) Green and low-cost synthesis of PANI-TiO2 nanocomposite mesoporous films for photoelectrochemical water splitting. R Soc Chem Adv 5:49429–49438

    CAS  Google Scholar 

  78. Lin Y, Li D, Hu J, Xiao G, Wang J, Li W, Fu X (2012) Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite. J Phys Chem C 116:5764–5772

    Article  CAS  Google Scholar 

  79. Dai K, Chen H, Peng T, Ke D, Yi H (2007) Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere 69:1361–1367

    Article  CAS  PubMed  Google Scholar 

  80. Baiocchi C, Brussino MC, Pramauro E, Bianco Prevot A, Palmisano L, Marci G (2002) Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV-VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry. Int J Mass Spectro 214:247–256

    Article  CAS  Google Scholar 

  81. Bianco Prevot A, Basso A, Baiocchi C, Pazzi M, Marci G, Augugliario V, Palmisano L, Pramauro E (2004) Analytical control of photocatalytic treatments: degradation of sulfonated azo dye. Anal Bioanal Chem 378:214–220

    Article  CAS  PubMed  Google Scholar 

  82. Aarthi T, Madras G (2008) Photocatalytic reduction of metals in presence of combustion synthesized nano-TiO2. Catal Commun 9:630–634

    Article  CAS  Google Scholar 

  83. Chen D, Ray AK (2001) Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem Eng Sci 56:1561–1570

    Article  CAS  Google Scholar 

  84. Testa JJ, Grela MA, Litter MI (2004) Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: involvement of Cr(V) species. Environ Sci Technol 38:1589–1594

    Article  CAS  PubMed  Google Scholar 

  85. Murruni L, Leyva G, Litter M (2007) Photocatalytic removal of Pb(II) over TiO2 and Pt-TiO2 powders. Catal Today 129:127–135

    Article  CAS  Google Scholar 

  86. Li L, Jiang F, Liu J, Wan H, Wan Y, Zheng S (2012) Enhanced photocatalytic reduction of aqueous Pb(II) over Ag loaded TiO2 with formic acid as hole scavenger. J Environ Sci Health A Toxic Hazard Subst Environ Eng 47(3):327–336

    Article  CAS  Google Scholar 

  87. Zimbone M, Buccheri MA, Cacciato G, Sanz R, Rappazzo G, Boninelli S, Reitano R, Romano L, Privitera V, Grimaldi MG (2015) Photocatalytical and antibacterial activity of TiO2 nanoparticles obtained by laser ablation in water. Appl Catal B Environ 165:487–494

    Article  CAS  Google Scholar 

  88. Wen B, Waterhouse GIN, Jia MY, Jiang ZH, Zhang ZM, Yu LM (2019) The feasibility of polyaniline-TiO2 coatings for photocathodic antifouling: antibacterial effect. Synth Metals 257:116175

    Article  CAS  Google Scholar 

  89. Liu IF, Annamalai T, Sutherland JH, Tse-Dinh YC (2009) Hydroxyl radicals are involved in cell killing by bacterial topoisomerase I cleavage complex. J Bacteriol 191(16):5315–5319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Muñoz-Bonilla A, Fernández-García M (2015) The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2015.01.030

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Philippines Council for Industry, Energy and Emerging Technology Research Development of the Department of Science and Technology (PCIEERD-DOST) under the project “Kapok Fiber Absorbent with Customizable Hydrophobicity/ Hydrophilicity for Oily Water and Wastewater Treatment” and the Office of the Vice-President for Academic Affairs of the University of the Philippines through the Emerging Inter-Disciplinary Research Program (OVPAA-EIDR C06-035). Special thanks are given to Dr. Candy C. Mercado of the DMMME, the University of the Philippines Diliman for the UV-vis spectroscopy characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Donnabelle L. Balela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gapusan, R.B., Balela, M.D.L. Visible light-induced photocatalytic and antibacterial activity of TiO2/polyaniline-kapok fiber nanocomposite. Polym. Bull. 79, 3891–3910 (2022). https://doi.org/10.1007/s00289-021-03679-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03679-w

Keywords

Navigation