Skip to main content
Log in

Development of active packaging films based on poly (butylene adipate-co-terephthalate) and silver–montmorillonite for shelf life extension of sea bream

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This paper is a continuation of our previous study focusing on the development of active food packaging films and presents the results of their potential application in the sea bream storage. Intended for fish packaging, active nanocomposite films based on poly (butylene adipate-co-terephthalate) and silver–montmorillonite (PBAT/Ag-MMT) with 2, 3 and 5 wt. % of Ag-MMT were successfully prepared and characterized by several techniques which confirmed the formation of exfoliated nanocomposite structures with a random dispersion of spherically shaped Ag nanoparticles on the whole of the polymer matrix. PBAT/Ag-MMT films exhibited a sharp reduction in their water and oxygen permeabilities. The kinetic study of the silver ions migration confirmed that the release was mainly ensured by diffusion. Due to this controlled release, these packaging films displayed a long-lasting antibacterial activity. Furthermore, the results of their use as sea bream packaging films confirmed their great potential for maintaining the freshness and quality of the fish and extending its shelf life for a period of 15 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. NikousalehPrakash AJ (2016) Antioxidant properties of selected spices used in Iranian cuisine and their efficacy in preventing lipid peroxidation in meat sausages. J Agr Sci Tech 18:67–78

    Google Scholar 

  2. Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: A review. Peptides 31:1949–1956

    Article  CAS  PubMed  Google Scholar 

  3. Ashie INA, Smith JP, Simpson BK, Haard NF (1996) Spoilage and shelf-life extension of fresh fish and shellfish. Crit Rev Food Sci Nut 36(1,2):87–121

    Article  CAS  Google Scholar 

  4. Huss HH (1995) Quality and quality changes in fresh fish. FAO Fisheries Technical FAO, Rome

    Google Scholar 

  5. Gram L, Huss HH (1996) Microbiological spoilage of fish and fish products. Int J Food Microbiol 33:121–137

    Article  CAS  PubMed  Google Scholar 

  6. Gram L, Dalgaard P (2002) Fish spoilage bacteria problems and solutions. Curr Opin Biotechnol 13:262–266

    Article  CAS  PubMed  Google Scholar 

  7. Huss HH, Reilly A, Ben Embarek KP (2000) Prevention and control of hazards in seafood. Food Control 11(2):149–156

    Article  Google Scholar 

  8. Cayré ME, Vignolo G, Garro O (2003) Modeling lactic acid bacteria growth in vacuum-packaged cooked meat emulsions stored at three temperatures. Food Microbiol 20(5):561–566

    Article  Google Scholar 

  9. Uzunlu S (2018) (2018) Effect of active antimicrobial films on the growth of pathogenic bacteria in Mantı. Food Sci Technol Campinas 39(1):203–209

    Article  Google Scholar 

  10. Janjarasskul T, Suppakul P (2018) Active and intelligent packaging: the indication of quality and safety. Crit Rev Food Sci 58:808–831

    Article  Google Scholar 

  11. Dutta P, Wang B (2019) Zeolite-supported silver as antimicrobial agents. Coord Chem Rev 383:1–29

    Article  CAS  Google Scholar 

  12. Diniz FR, Maia RCAP, Rannier L, Andrade LN, Chaud MV, da Silva CF, Corrêa CB, de Abuquerque Junior RLC, da Costa LP, Souto EB, Severino P (2020) Silver nanoparticles-composing alginate/gelatin hydrogel improves wound healing in vivo. Nanomaterials 10:390

    Article  CAS  PubMed Central  Google Scholar 

  13. Akter M, Sikder MdT, Rahman MdM, Atique Ullah AKM, Binte Hossain KF, Banik S, Hosokawa T, Saito T, Kurasaki M (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16

    Article  CAS  PubMed  Google Scholar 

  14. Ovais M, Ahmad I, Khalil AT, Mukherjee S, Javed R, Ayaz M, Raz A, Shinwari ZK (2018) Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects. Appl Microbiol Biotechnol 102:4305–4318

    Article  CAS  PubMed  Google Scholar 

  15. Patil V, Mahajan S, Kulkarni M, Patil K, Rode C, Coronas A, Yi GR (2020) Synthesis of silver nanoparticles colloids in imidazolium halide ionic liquids and their antibacterial activities for gram-positive and gram-negative bacteria. Chemosphere 243:125302

  16. Ahmed F, Qayyum S, Husain Q (2018) Benign nano-assemblages of silver induced by β galactosidase with augmented antimicrobial and industrial dye degeneration potential. Mater Sci Eng C 91:570–578

    Article  CAS  Google Scholar 

  17. Quiroz-Hernández JE, Kharissova OV, Aguirre-Arzola VE, Martinez-Avila GCG, Castillo-Velazquez U (2020). Evaluation of the conditions for the synthesis of silver nanoparticles from orange peels and its antibacterial effect. Recent Patents on Nanotechnology

  18. Blanco-Flores A, Arteaga-Larios N, Pérez-García V, Martínez-Gutiérrez J, Ojeda-Escamilla M, Rodríguez-Torres. (2018) Efficient fluoride removal using Al-Cu oxide nanoparticles supported on steel slag industrial waste solid. Environ Sci Pollut Res Int 25:6414–6428

    Article  CAS  PubMed  Google Scholar 

  19. Kraśniewska K, Galus S, Gniewosz M (2020) Biopolymers-based materials containing silver nanoparticles as active packaging for food applications–a review. Int J Mol Sci 21(3):698

    Article  PubMed Central  CAS  Google Scholar 

  20. Braga LR, Rangel ET, Ziani Suarez PA, Machado F (2018) Simple synthesis of active films based on PVC incorporated with silver nanoparticles: evaluation of the thermal, structural and antimicrobial properties. J Food Pack Shelf Life 15:122–129

    Article  Google Scholar 

  21. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831–1848

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sanguiñedo P, Fratila RM, Belén Estevez M, de la Fuente JM, Grazú V, Alborés S (2018) Extracellular biosynthesis of silver nanoparticles using fungi and their antibacterial activity. Nano Biomed Eng 10:165–173

    Article  CAS  Google Scholar 

  23. Darroudi M, Ahmad MB, Shameli K, Abdullah A, Azowa I (2009) Synthesis and characterization of UV-irradiated silver/montmorillonite nanocomposites. Solid State Sci 11:1621–1624

    Article  CAS  Google Scholar 

  24. García-Guzmán P, Medina-Torres L, Calderas F, Bernad-Bernad MJ, Gracia-Mora J, Mena B, Manero O (2018) Characterization of hybrid microparticles/Montmorillonite composite with raspberrylike morphology for Atorvastatin controlled release. Colloids Surf, B 167:397–406

    Article  CAS  Google Scholar 

  25. Carbone M, Donia DT, Sabbatella G, Antiochia R (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University - Science 7:273–279

    Article  Google Scholar 

  26. Lammi S, Le Moignec N, Djenaneb D, Gontarda N, Angellier-Coussy H (2018) Dry fractionation of olive pomace for the development of food packaging biocomposites. Ind Crops Prod 120:250–261

    Article  CAS  Google Scholar 

  27. Wróblewska-Krepsztul J, Rydzkowski T, Borowski G, Szczypiński M, Klepka T, Thakur VK (2018) Recent progress in biodegradable polymers and nanocomposites-based packaging materials for sustainable environment. Int J Polym Anal 23:383–395

    Article  Google Scholar 

  28. Hu LF, Zhang CJ, Wu HL, Yang JL, Liu B, Duan HY, Zhang XH (2018) Highly active organic lewis pairs for the copolymerization of epoxides with cyclic anhydrides: metal-free access to well-defined aliphatic polyesters. Macromolecules 51:3126–3134

    Article  CAS  Google Scholar 

  29. Bheemaneni G, Saravana S, Kandaswamy R (2018) Processing and characterization of poly (butylene adipate-co-terephthalate)/wollastonite biocomposites for medical applications. Mater Today: Proc 5:1807–1816

    CAS  Google Scholar 

  30. Falcão GAM, Almeida TG, Bardi MAG, Carvalho LH, Canedo EL (2019) PBAT/organoclay composite films-part 2: effect of UV aging on permeability, mechanical properties and biodegradation. Polym Bull 76:291–301

    Article  CAS  Google Scholar 

  31. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benhacine F, Hadj-Hamou AS, Habi A, Grohens Y (2015) Development of antimicrobial poly (η-caprolactone)/poly (lactic acid)/silver exchanged montmorillonite nanoblend films with silver ion release property for active packaging use. Inter Polym Proc 30:511–521

    Article  CAS  Google Scholar 

  33. Yahiaoui F, Benhacine F, Ferfera-Harrar H, Habi A, Hadj-Hamou AS, Grohens Y (2015) Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polym Bull 72:235–254

    Article  CAS  Google Scholar 

  34. Benhacine F, Hadj-Hamou AS, Habi A (2016) Development of long-term antimicrobial poly (ε-caprolactone)/silver exchanged montmorillonite nanocomposite films with silver ion release property for active packaging use. Polym Bull 73:1207–1227

    Article  CAS  Google Scholar 

  35. Hedayati MT, Ansari S, Ahmadi B, Taghizadeh Armaki M, Shokohi T, Abastabar M, H Er, Özhak B, Öğünç D, Ilkit M, Seyedmousavi S (2019) Identification of clinical dermatophyte isolates obtained from Iran by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Curr Med Mycol 5(2):22–26

  36. Reeve MA, Buddie AG, Pollard KM, Varia S, Seier MK, Offord LC, Cock MJW (2018) A highly-simplified and inexpensive MALDI-TOF mass spectrometry sample-preparation method with broad applicability to microorganisms, plants, and insects. J Biol Meth 5(4):e103. https://doi.org/10.14440/jbm.2018.261

    Article  Google Scholar 

  37. Krikorian V, Pochan DJ (2005) Crystallization Behavior of Poly (l-lactic acid) Nanocomposites: Nucleation and Growth Probed by Infrared Spectroscopy. Macromolecules 38(15):6520–6527

    Article  CAS  Google Scholar 

  38. Gopakumar TG, Lee JA, Kontopoulou M, Parent JS (2002) Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer 43(20):5483–5491

    Article  CAS  Google Scholar 

  39. Chivrac F, Kadlecová Z, Pollet E, Averous L (2006) Aromatic copolyester-based nano-biocomposites: Elaboration, Structural Characterization and properties. J Polym Environ 14:393–401

    Article  CAS  Google Scholar 

  40. Fernández MJ, Fernández MD (2020) Effect of Organic Modifier and Clay Content on Non-Isothermal Cold Crystallization and Melting Behavior of Polylactide/Organovermiculite Nanocomposites. Polymers 12(2):364

    Article  PubMed Central  CAS  Google Scholar 

  41. Temgire MK, Joshi SS (2004) Optical and structural studies of silver nanoparticles. Radiat Phys Chem 71:1039–1044

    Article  CAS  Google Scholar 

  42. Kora AJ, Rastogi L (2013) Enhancement of Antibacterial Activity of Capped Silver Nanoparticles in Combination with Antibiotics, on Model Gram-Negative and Gram-Positive Bacteria. Bioinorg. Chem. Appl. 2013(1):7

    Google Scholar 

  43. Carbone GG, Serra A, Buccolieri A, Manno D (2019) A silver nanoparticle-poly (methyl methacrylate) based colorimetric sensor for the detection of hydrogen peroxide. Heliyon. Heliyon 5(11):e0288

    Google Scholar 

  44. Fahmy HM, Mosleh AM, Elghany AA, Shams-Eldin E, Abu Serea ES, Ali SA, Shalan AE (2019) Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC Adv 9(35):20118–20136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pandey S, Goswami GK, Nanda KK (2012) Green synthesis of biopolymersilver nanoparticle nanocomposite: an optical sensor for ammonia detection. Int J Biol Macromol 51:583–589

    Article  CAS  PubMed  Google Scholar 

  46. Chhatre A, Solasa P, Sakle S, Thaokar R, Mehra A (2012) Color and surface plasmon effects in nanoparticles systems: case of silver nanoparticles prepared by microemulsion route. Colloids Surf A Physicochem Eng Asp 404:83–92

    Article  CAS  Google Scholar 

  47. Kanmani P, Rhim JW (2014) Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem 148:162–169

    Article  CAS  PubMed  Google Scholar 

  48. Hadj-Hamou AS, Matassi S, Habi A, Yahiaoui F (2014) Effect of cloisite 30B on the thermal and tensile behavior of poly (butylene adipate-co-terephthalate)/ poly(vinyl chloride) nanoblends. Polym Bull 71:1483–1503

    Article  CAS  Google Scholar 

  49. Shankar S, Rhim JW (2016) Tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial PBAT/silver nanoparticles composite films. LWT-Food Sci Technol 72:149–156

    Article  CAS  Google Scholar 

  50. Yusoh K, Kumaran SV, Ismail FS (2018) Surface Modification of Nanoclay for the Synthesis of Polycaprolactone (PCL) – Clay Nanocomposite, MATEC Web Conf. Chemical Engineering & Natural Resources 150:02005

    Google Scholar 

  51. Benhacine F, Ouargli A, Hadj-Hamou AS (2019) Preparation and Characterization of Novel Food Packaging Materials Based on Biodegradable PCL/ Ag-Kaolinite Nanocomposites with Controlled Release. Polym-Plast Technol Eng 58:328–340

    CAS  Google Scholar 

  52. Wang D, Liu Q, Houa D, Cheng H, Frost RL (2017) The Formation Mechanism of Organoammonium-Kaolinite by Solid-Solid Reaction. Appl Clay Sci 146:195–200

    Article  CAS  Google Scholar 

  53. Huang Y, Mei L, Chen X, Wang Q (2018) Recent Developments in Food Packaging Based on Nanomaterials. Nanomaterials 8(10):830

    Article  PubMed Central  CAS  Google Scholar 

  54. Simbine EO, L. da C. Rodrigues, J. das G. Lapa-Guimarães, E.S. Kamimura, C.A.F.de Oliveira, C.H. Corassin. (2019) Application of silver nanoparticles in food packages: a review. Food Science and Technology 39(4):793–802

    Article  Google Scholar 

  55. Bumbudsanpharoke N, Ko S (2015) Nano-food packaging: an overview of market, migration research and safety regulations. J of Food science 80:R910–R923

    Article  CAS  Google Scholar 

  56. Chen X, Chen M, Xu C, Yam KL (2019) Critical review of controlled release packaging to improve food safety and quality. Crit Rev Food Sci Nutr 59(15):2386–2399

  57. Lansdown ABG (2010) A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv Pharmacol Sci 2010:910686

  58. Lee SH, Jun BH (2019) Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci 20:865

    Article  CAS  PubMed Central  Google Scholar 

  59. A. Pugliara. (2016) Elaboration of thin nanocomposite layers based on Ag nanopartiles embedded in silica for controlled biocide properties. Micro and nanotechnologies/Microelectronics. Université Paul Sabatier - Toulouse III. English. NNT : 2016TOU30324

  60. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  61. Wang G, Li M,  Ma F, Wang H, Xu X, Zhou G (2017) Physicochemical properties of Pseudomonas fragi isolates response to modified atmosphere packaging. FEMS Microbiol Lett 364(11):fnx106

  62. Abdou AM (2003) Purification and Partial Characterization of Psychrotrophic Serratia marcescens Lipase. J Dairy Sci 86(1):127–132

    Article  CAS  PubMed  Google Scholar 

  63. Pagan L, Lang A, Vedovelli C, Moling O, Rimenti G, Pristera R, Mian P (2003) Soft Tissue Infection and Bacteremia Caused by Shewanella putrefaciens. J Clin Microbiol 41(5):2240–2241

    Article  Google Scholar 

  64. Francis KP, Mayr R, von Stetten F, Stewart GS, Scherer S (1998) Discrimination of psychrotrophic and mesophilic strains of the Bacillus cereus group by PCR targeting of major cold shock protein genes. Appl Environ Microbiol 64(9):3525–3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang GY, Wang HH, Han YW, Xing T, Ye KP, Xu XL, Zhou GH (2017) Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiol 63:139–146

    Article  CAS  PubMed  Google Scholar 

  66. Navarro JA, Ohmann E, Sanchez D, Botella JA, Liebisch G, Moltó MD, Ganfornina MD, Schmitz G, Schneuwly S (2010) Altered lipid metabolism in a Drosophila model of Friedreich’s ataxia. Hum Mol Genet 19(14):2828–2840

    Article  CAS  PubMed  Google Scholar 

  67. Holt KB, Bard AJ (2005) Interaction of Silver(I) Ions with the Respiratory Chain of Escherichia coli: An Electrochemical and Scanning Electrochemical Microscopy Study of the Antimicrobial Mechanism of Micromolar Ag+. Biochemistry 44(39):13214–13223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Dr.Yeşim Çekin of the Faculty of Medicine of Akdeniz University (Antalya, Turkey) for the identification of bacterial strains by the MALDI-TOF-MS analysis. We would also like to thank all of the microbiology laboratory team of MERINAL laboratories SARL (Algiers, Algeria) for providing research facilities for in vitro tests as well as for their precious support and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assia Siham Hadj-Hamou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seray, M., Hadj-Hamou, A.S., uzunlu, S. et al. Development of active packaging films based on poly (butylene adipate-co-terephthalate) and silver–montmorillonite for shelf life extension of sea bream. Polym. Bull. 79, 3573–3594 (2022). https://doi.org/10.1007/s00289-021-03671-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03671-4

Keywords

Navigation