Skip to main content
Log in

KA2 and A3 coupling reactions promoted by Fe3O4@T-CS@Cys@Ag+ nanocomposite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Chitosan biopolymer was functionalized with cysteine amino acid via trichloro-1,3,5-triazine-bridged agent. The magnetization process was done due to the treatment of functionalized chitosan with iron oxide nanoparticles. In the final nanocomposite (Fe3O4@T-CS@Cys@Ag+), thiol and carboxylate groups of cysteine were surrounded by silver ions. The catalytic activity of the prepared nanocomposite was studied in KA2 and A3 coupling reactions for the synthesis of propargylamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Scheme 3
Fig. 8

Similar content being viewed by others

References

  1. Jesin I, Nandi GC (2019) Recent advances in the A3 coupling reactions and their applications. Eur J Org Chem 16:2704–2720. https://doi.org/10.1002/ejoc.201900001

    Article  CAS  Google Scholar 

  2. Mariconda A, Sirignano M, Costabile C, Longo P (2020) New NHC- silver and gold complexes active in A3-coupling (aldehydealkyne-amine) reaction. Mol Catal 480:110570–110577. https://doi.org/10.1016/j.mcat.2019.110570

    Article  CAS  Google Scholar 

  3. Peshkov VA, Pereshivko OP, Van der Eycken EV (2012) A walk around the A3-coupling. Chem Soc Rev 41:3790–3807. https://doi.org/10.1039/C2CS15356D

    Article  CAS  PubMed  Google Scholar 

  4. Saha TK, Das R (2018) Progress in synthesis of propargylamine and its derivatives by nanoparticle catalysis via A3 coupling: a decade update. ChemistrySelect 3:147–169. https://doi.org/10.1002/slct.201702454

    Article  CAS  Google Scholar 

  5. Tzouras NV, Neofotistos SP, Vougioukalakis GC (2019) Zn-Catalyzed multicomponent KA2 coupling: one-pot assembly of propargylamines bearing tetrasubstituted carbon centers. ACS Omega 4:10279–10292. https://doi.org/10.1021/acsomega.9b01387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bosica G, Abdilla R (2017) The KA2 coupling reaction under green, solventless, heterogeneous catalysis. J Mol Catal A Chem 426:542–549. https://doi.org/10.1016/j.molcata.2016.09.028

    Article  CAS  Google Scholar 

  7. Xiong X, Chen H, Liao X, Lai S, Gao L (2018) KA2-Coupling reaction catalyzed by semi-heterogeneous magnetically graphene oxide supported copper catalyst under microwave condition. ChemistrySelect 3:8819–8825. https://doi.org/10.1002/slct.201801516

    Article  CAS  Google Scholar 

  8. Perumgani PC, Keesara S, Parvathaneni S, Mandapati MR (2016) Polystyrene supported N-phenylpiperazine–Cu(II) complex: an efficient and reusable catalyst for KA2-coupling reactions under solvent-free conditions. New J Chem 40:5113–5120. https://doi.org/10.1039/C5NJ03272E

    Article  CAS  Google Scholar 

  9. Kochman A, Skolimowski J, Gebicka L, Metodiewa D (2003) Antioxidant properties of newly synthesized N-propargylamine derivatives of nitroxyl: a comparison with deprenyl. Pol J Pharmacol 55:389–400 (PMID: 14506318)

    CAS  PubMed  Google Scholar 

  10. Carmona RC, Wendler EP, Sakae GH, Comasseto JV, Dos Santos AA (2015) A3-Coupling reaction as a strategy towards the synthesis of alkaloids. J Braz Chem Soc 26:117–123. https://doi.org/10.5935/0103-5053.20140223

    Article  CAS  Google Scholar 

  11. Gommermann N, Knochel P (2004) Practical highly enantioselective synthesis of terminal propargylamines. An expeditious synthesis of (S)-(+)-coniine. Chem Commun 20:2324–2325. https://doi.org/10.1039/B409951F

    Article  Google Scholar 

  12. Chen JJ, Swope DM, Dashtipour K (2007) Comprehensive review of rasagiline, a second-generation monoamine oxidase inhibitor, for the treatment of Parkinson’s disease. Clin Ther 29:1825–1849. https://doi.org/10.1016/j.clinthera.2007.09.021

    Article  CAS  PubMed  Google Scholar 

  13. Bar-Am O, Amit T, Weinreb O, Youdim MBH, Mandel S (2010) Propargylamine containing compounds as modulators of proteolytic cleavage of amyloid protein precursor: Involvement of MAPK and PKC activation. J Alzheimer’s Dis 21:361–371. https://doi.org/10.3233/JAD-2010-100150

    Article  CAS  Google Scholar 

  14. Yamamoto Y, Hayashi H, Saigoku T, Nishiyama H (2005) Domino coupling relay approach to polycyclic pyrrole-2-carboxylates. J Am Chem Soc 127:10804–10805. https://doi.org/10.1021/ja053408a

    Article  CAS  PubMed  Google Scholar 

  15. Harvey DF, Sigano DM (1996) Synthesis of cyclopropylpyrrolidines via reaction of N-Allyl-N-propargylamides with a molybdenum carbene complex. Effect of substituents and reaction conditions. J Org Chem 61:2268–2272. https://doi.org/10.1021/jo9519930

    Article  CAS  Google Scholar 

  16. Xiao FP, Chen YL, Liu Y, Wang JB (2008) Sequential catalytic process: synthesis of quinoline derivatives by AuCl3/CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes. Tetrahedron 64:2755–2761. https://doi.org/10.1016/j.tet.2008.01.046

    Article  CAS  Google Scholar 

  17. Lee ES, Yeom HS, Hwang JH, Shin S (2007) A practical gold-catalyzed route to 4-substituted oxazolidin-2-ones from N-boc propargylamines. Eur J Org Chem 21:3503–3507. https://doi.org/10.1002/ejoc.200700210

    Article  CAS  Google Scholar 

  18. Yan B, Liu YH (2007) Gold-catalyzed multicomponent synthesis of aminoindolizines from aldehydes, amines, and alkynes under solvent-free conditions or in water. Org Lett 9:4323–4326. https://doi.org/10.1021/ol701886e

    Article  CAS  PubMed  Google Scholar 

  19. Shibata D, Okada E, Molette J, Me´debielle M (2008) Facile synthesis of fluorine-containing 1,10-phenanthrolines by the pyridine-ring formation reaction of N-propargyl-5,7-bis(trifluoroacetyl)-8-quinolylamine with amines: isolation of the intermediates 1,4-dihydro-1,10-phenanthrolin-4-ols. Tetrahedron Lett 49:7161–7164. https://doi.org/10.1016/j.tetlet.2008.09.172

    Article  CAS  Google Scholar 

  20. Ramazani A, Ahankar H, Nafeh ZT, Joo SW (2019) Modern catalysts in A3- coupling reactions. Curr Org Chem 23:2783–2801. https://doi.org/10.2174/1385272823666191113160643

    Article  CAS  Google Scholar 

  21. Brindaban CR, Sukalyan B, Debasree S (2011) Green recyclable supported-metal catalyst for useful organic transformations. Curr Org Synth 8:146–171. https://doi.org/10.2174/157017911794697312

    Article  Google Scholar 

  22. Hung TT, Chung MH, Chiu JJ, Yang MW, Tien TN, Shen CY (2021) Poly (4-styrenesulfonic acid) doped polypyrrole/tungsten oxide/reduced graphene oxide nanocomposite films based surface acoustic wave sensors for NO sensing behavior. Org Electron 88:106006–106015. https://doi.org/10.1016/j.orgel.2020.106006

    Article  CAS  Google Scholar 

  23. Gautam V, Kumar A, Kumar R, Jain VK, Nagpal S (2021) Silicon nanowires/reduced graphene oxide nanocomposite based novel sensor platform for detection of cyclohexane and formaldehyde. Mat Sci Semicond Proc 123:105571. https://doi.org/10.1016/j.mssp.2020.105571

    Article  CAS  Google Scholar 

  24. Galliano S, Bella F, Bonomo M, Viscardi G, Gerbaldi C, Boschloo G, Barolo C (2020) Hydrogel electrolytes based on xanthan gum: green route towards stable dye-sensitized solar cells. Nanomaterials 10(8):1585–1604. https://doi.org/10.3390/nano10081585

    Article  CAS  PubMed Central  Google Scholar 

  25. Mariotti N, Bonomo M, Fagiolari L, Barbero N, Gerbaldi C, Bella F, Barolo C (2020) Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem 22(21):7168–7218. https://doi.org/10.1039/D0GC01148G

    Article  CAS  Google Scholar 

  26. Falco M, Simari C, Ferrara C, Nair JR, Meligrana G, Bella F, Nicotera I, Mustarelli P, Winter M, Gerbaldi C (2019) Understanding the effect of UV-induced cross-linking on the physicochemical properties of highly performing PEO/LiTFSI-based polymer electrolytes. Langmuir 35(25):8210–8219. https://doi.org/10.1021/acs.langmuir.9b00041

    Article  CAS  PubMed  Google Scholar 

  27. Piana G, Ricciardi M, Bella F, Cucciniello R, Proto A, Gerbaldi C (2020) Poly (glycidyl ether) s recycling from industrial waste and feasibility study of reuse as electrolytes in sodium-based batteries. Chem Eng J 382:122934–122956. https://doi.org/10.1016/j.cej.2019.122934

    Article  CAS  Google Scholar 

  28. Ruiz-Hitzky E, Darder M, Aranda P (2005) Functional biopolymer nanocomposites based on layered solids. J Mater Chem 15:3650–3662. https://doi.org/10.1039/b505640n

    Article  CAS  Google Scholar 

  29. Sel E, Ulu A, Ateş B, Köytepe S (2020) Comparative study of catalase immobilization via adsorption on P (MMA-co-PEG500MA) structures as an effective polymer support. Polym Bull. https://doi.org/10.1007/s00289-020-03233-0

    Article  Google Scholar 

  30. Bharadwaz A, Jayasuriya AC (2020) Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C 110:110698–110728. https://doi.org/10.1016/j.msec.2020.110698

    Article  CAS  Google Scholar 

  31. El Kadib A (2015) Chitosan as a sustainable organocatalyst: a concise overview. Chemsuschem 8:217–244. https://doi.org/10.1002/cssc.201402718

    Article  CAS  PubMed  Google Scholar 

  32. Peng J, Wang X, Lou T (2019) Preparation of chitosan/gelatin composite foam with ternary solvents of dioxane/acetic acid/water and its water absorption capacity. Polym Bull 77:5227–5244. https://doi.org/10.1007/s00289-019-03016-2

    Article  CAS  Google Scholar 

  33. Dhanavel S, Praveena P, Narayanan V, Stephen A (2019) Chitosan/reduced graphene oxide/Pd nanocomposites for co-delivery of 5-fluorouracil and curcumin towards HT-29 colon cancer cells. Polym Bull 77:5681–5696. https://doi.org/10.1007/s00289-019-03039-9

    Article  CAS  Google Scholar 

  34. Rajkumari J, Busi S (2018) Advances in biomedical application of chitosan and its functionalized nano-derivatives. Fungal Nanobionics Princ Appl. https://doi.org/10.1007/978-981-10-8666-3-6

    Article  Google Scholar 

  35. Jiménez-Gómez CP, Cecilia JA (2020) Chitosan: a natural biopolymer with a wide and varied range of applications. Molecules 25:3981–4024. https://doi.org/10.3390/molecules25173981

    Article  CAS  PubMed Central  Google Scholar 

  36. Humelnicu D, Dragan ES, Ignat M, Dinu MV (2020) A Comparative Study on Cu2+, Zn2+, Ni2+, Fe3+, and Cr3+ metal ions removal from industrial wastewaters by chitosan-based composite cryogels. Molecules 25:2664–2682. https://doi.org/10.3390/molecules25112664

    Article  CAS  PubMed Central  Google Scholar 

  37. Molnár A (2019) The use of chitosan-based metal catalysts in organic transformations. Coord Chem Rev 388:126–171. https://doi.org/10.1016/j.ccr.2019.02.018

    Article  CAS  Google Scholar 

  38. Jiao LY, Zhang Z, Hong Q, Ning ZH, Liu S, Sun M, Hao Q, Xu L, Li Z, Ma XX (2020) Recyclable copper catalyst on chitosan for facile preparation of alkyl/aryl mixed phosphates via deaminated esterification between diphenylphosphoryl azides and aliphatic alcohols. Mol Catal 494:111120. https://doi.org/10.1016/j.mcat.2020.111120

    Article  CAS  Google Scholar 

  39. Alirezvani Z, Dekamin MG, Valiey E (2019) Cu(II) and magnetite nanoparticles decorated melamine-functionalized chitosan: a synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci Rep 9:17758–17770. https://doi.org/10.1038/s41598-019-53765-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu P, Li B, Wang L, Qin C, Zhu L (2016) A green and recyclable chitosan supported catalyst for the borylation of α, β-unsaturated acceptors in water. Catal Commun 86:23–26. https://doi.org/10.1016/j.catcom.2016.08.002

    Article  CAS  Google Scholar 

  41. Barana T, Nasrollahzadeh M (2020) Pd/CoFe2O4/chitosan: a highly effective and easily recoverable hybrid nanocatalyst for synthesis of benzonitriles and reduction of 2-nitroaniline. J Phys Chem Solids 149:109772. https://doi.org/10.1016/j.jpcs.2020.109772

    Article  CAS  Google Scholar 

  42. Zhao J, Zheng X, Liu Q, Xu M, Yang S, Zeng M (2020) Chitosan supported Pd0 nanoparticles encaged in Al or Al-Fe pillared montmorillonite and their catalytic activities in Sonogashira coupling reactions. Appl Clay Sci 195:105721. https://doi.org/10.1016/j.clay.2020.105721

    Article  CAS  Google Scholar 

  43. Rafiee F, Hosseini SA (2019) Pd nanoparticles immobilized on the magnetic silica–chitosan nanocomposite (NiFe2O4@SiO2@CS-Pd NPs) promoted the biaryl synthesis. J Iran Chem Soc 16:1993–2001. https://doi.org/10.1007/s13738-019-01667-6

    Article  CAS  Google Scholar 

  44. Lopes ECN, Sousa KS, Airoldi C (2009) Chitosan–cyanuric chloride intermediary as a source to incorporate molecules—Thermodynamic data of copper/biopolymer interactions. Thermochim Acta 483:21–28. https://doi.org/10.1016/j.tca.2008.10.022

    Article  CAS  Google Scholar 

  45. Liu X, Ma Z, Xing J, Liu H (2004) Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J Magn Magn Mater 270:1–6. https://doi.org/10.1016/j.jmmm.2003.07.006

    Article  CAS  Google Scholar 

  46. Feiz A, Bazgir A (2016) Gold nanoparticles supported on mercaptoethanol directly bonded to MCM-41: an efficient catalyst for the synthesis of propargylamines. Catal Commun 73:88–92. https://doi.org/10.1016/j.catcom.2015.09.028

    Article  CAS  Google Scholar 

  47. Bhatte KD, Sawant DN, Deshmukh KM, Bhanage BM (2011) Nanosize Co3O4 as a novel, robust, efficient and recyclable catalyst for A3-coupling reaction of propargylamines. Catal Commun 16:114–119. https://doi.org/10.1016/j.catcom.2011.09.012

    Article  CAS  Google Scholar 

  48. Loni M, Yazdani H, Bazgir A (2018) Gold nanoparticles-decorated dithiocarbamate nanocomposite: an efficient heterogeneous catalyst for the green A3-coupling synthesis of propargylamines. Catal Lett 148:3467–3476. https://doi.org/10.1007/s10562-018-2540-z

    Article  CAS  Google Scholar 

  49. Varyani M, Khatri P, Jain S (2016) Amino acid ionic liquid bound copper Schiff base catalyzed highly efficient three component A3-coupling reaction. Catal Commun 77:113–117. https://doi.org/10.1016/j.catcom.2016.01.020

    Article  CAS  Google Scholar 

  50. Rosales J, Garcia J, Avila E, Gonzales T, Coll DS, Ocanada-Mavares E (2017) A novel tetramer copper(I) complex containing diallylphosphine ligands: synthesis, characterization and catalytic application in A3-coupling (Aldehyde-Amine-Alkyne) reactions. Inorg Chim Acta 467:155–162. https://doi.org/10.1016/j.ica.2017.07.038

    Article  CAS  Google Scholar 

  51. Friendy S, Elkadib A, Lahcini M, Primo A, Garcia H (2016) Copper nanoparticles supported on graphene as an efficient catalyst for A3 coupling of benzaldehydes. Catal Sci Technol 6:4306–4317. https://doi.org/10.1039/C5CY01414J

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the partial financial support received from the Research Council of Alzahra University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rafiee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiee, F., Hosseinvand, S. KA2 and A3 coupling reactions promoted by Fe3O4@T-CS@Cys@Ag+ nanocomposite. Polym. Bull. 79, 2799–2817 (2022). https://doi.org/10.1007/s00289-021-03651-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03651-8

Keywords

Navigation