Skip to main content
Log in

Quaternary ammonium functionalized cationic polythiophene for the detection and imaging of gram-positive bacteria

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The persistence of bacterial infections in humans causes severe adverse health consequences and uncertainties in the global economy. It is of great advantage to develop a rapid tool for the earlier diagnosis and treatment of pathogenic infections. In this work, an active polythiophene derivative containing reactive pentafluorophenyl (PFP) ester groups was prepared via Fe3+-catalyzed oxidative polymerization using PFP thiophene-3-acetate as the monomer. The active polythiophene derivative was conjugated with N,N-dimethyl-1,3-propanediamine via ester-amine reaction, followed by quaternization with 1-bromobutane. The resultant polythiophene derivative (QPDMAPTA) possesses the quaternary ammonium salt groups on its side chain and shows cationic zeta potential of + 12.79 eV at neutral pH. The as-prepared QPDMAPTA exhibits high-level antibacterial action against gram-positive bacteria (Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), and methicillin-resistant S. aureus) as compared with gram-negative bacteria (Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa)). Furthermore, the zeta potential measurements show higher uptake of QPDMAPTA by gram-positive bacteria than the gram-negative bacteria, which depicts the active role of the biological interactions with the charged QPDMAPTA in its differential uptake and bactericidal effect. This phenomenon also facilitates the identification of gram-positive bacteria by observing the color changes of collected bacterial cakes before and after treatment with QPDMAPTA. The fluorescent nature of QPDMAPTA can be used for imaging and detection of gram-positive bacteria via adopting a fluorescent technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shin C, Lee HN, Ryu JS et al (2018) Rapid naked-eye detection of Gram-positive bacteria by vancomycin-based nano-aggregation. RSC Adv 8:25094–25103

    Article  CAS  Google Scholar 

  2. Lee MMS, Xu W, Zheng L et al (2020) Ultrafast discrimination of Gram-positive bacteria and highly efficient photodynamic antibacterial therapy using near-infrared photosensitizer with aggregation-induced emission characteristics. Biomaterials 230:119582

    Article  CAS  PubMed  Google Scholar 

  3. Zhou C, Song H, Zhang F et al (2019) A facile method to fabricate an antimicrobial coating based on poly(1-vinyl-3-allylimidazolium iodide) (PAVI) and poly(ethylene glycol) dimethyl acrylate (PEGDMA). Polym Bull 76:5433–5449

    Article  CAS  Google Scholar 

  4. Chaiarwut S, Niyompanich J, Ekabutr P et al (2020) Development and characterization of antibacterial hydroxyapatite coated with mangosteen extract for bone tissue engineering. Polym Bull. https://doi.org/10.1007/s00289-020-03284-3

    Article  Google Scholar 

  5. Choi SK, Myc A, Silpe JE et al (2013) Dendrimer-based multivalent vancomycin nanoplatform for targeting the drug-resistant bacterial surface. ACS Nano 7:214–228

    Article  CAS  PubMed  Google Scholar 

  6. Jiao Y, Niu L-n, Ma S et al (2017) Quaternary ammonium-based biomedical materials: state-of-the-art, toxicological aspects and antimicrobial resistance. Prog Polym Sci 71:53–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahmed HB, Emam HE, Mashaly HM et al (2018) Nanosilver leverage on reactive dyeing of cellulose fibers: color shading, color fastness and biocidal potentials. Carbohydr Polym 186:310–320

    Article  CAS  PubMed  Google Scholar 

  8. Emam HE (2019) Arabic gum as bio-synthesizer for Ag–Au bimetallic nanocomposite using seed-mediated growth technique and its biological efficacy. J Polym Environ 27:210–223

    Article  CAS  Google Scholar 

  9. Emam HE, Darwesh OM, Abdelhameed RM (2020) Protective cotton textiles via amalgamation of cross-linked Zeolitic imidazole frameworks. Ind Eng Chem Res 59:10931–10944

    Article  CAS  Google Scholar 

  10. Emam HE (2019) Antimicrobial cellulosic textiles based on organic compounds. 3 Biotech 9(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gong H, Zhang K, Dicko C et al (2019) Ag–Polymer nanocomposites for capture, detection, and destruction of bacteria. ACS Appl Nano Mater 2:1655–1663

    Article  CAS  Google Scholar 

  12. Jokerst JC, Adkins JA, Bisha B et al (2012) Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal Chem 84:2900–2907

    Article  CAS  PubMed  Google Scholar 

  13. Esterhuizen-Londt M, Downing S, Downing TG (2011) Improved sensitivity using liquid chromatography mass spectrometry (LC-MS) for detection of propyl chloroformate derivatised beta-n-methylamino-L-alanine (BMAA) in cyanobacteria. Water SA 37:133–138

    Article  CAS  Google Scholar 

  14. Abrami M, Ascenzioni F, Di Domenico EG et al (2018) A novel approach based on low-field NMR for the detection of the pathological components of sputum in cystic fibrosis patients. Magn Reson Med 79:2323–2331

    Article  CAS  PubMed  Google Scholar 

  15. Tominaga T (2018) Rapid detection of Klebsiella pneumoniae, Klebsiella oxytoca, Raoultella ornithinolytica and other related bacteria in food by lateral-flow test strip immunoassays. J Microbiol Methods 147:43–49

    Article  CAS  PubMed  Google Scholar 

  16. Banerjee R, Teng CB, Cunningham SA et al (2015) Randomized trial of rapid multiplex polymerase chain reaction-based blood culture identification and susceptibility testing. Clin Infect Dis 61:1071–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Franco-Duarte R, Cernakova L, Kadam S et al (2019) Advances in chemical and biological methods to identify microorganismsfrom past to present. Microorganisms 7:130

    Article  CAS  PubMed Central  Google Scholar 

  18. Law JW-F, Ab Mutalib N-S, Chan K-G et al (2015) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770

    Article  PubMed  PubMed Central  Google Scholar 

  19. Das S, Chatterjee DP, Ghosh R et al (2015) Water soluble polythiophenes: preparation and applications. RSC Adv 5:20160–20177

    Article  CAS  Google Scholar 

  20. Tang J, Chu B, Wang J et al (2019) Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of gram-negative and gram-positive bacteria. Nat Commun 10:4057

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ahmed HB, Emam HE (2020) Environmentally exploitable biocide/fluorescent metal marker carbon quantum dots. RSC Adv 10:42916–42929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mawad D, Gilmore K, Molino P et al (2011) An erodible polythiophene-based composite for biomedical applications. J Mater Chem 21:5555–5560

    Article  CAS  Google Scholar 

  23. Zhu C, Yang Q, Liu L et al (2011) Multifunctional cationic poly(p-phenylene vinylene) polyelectrolytes for selective recognition, imaging, and killing of bacteria over mammalian cells. Adv Mater 23:4805–4810

    Article  CAS  PubMed  Google Scholar 

  24. Parthasarathy A, Pappas HC, Hill EH et al (2015) Conjugated polyelectrolytes with imidazolium solubilizing groups. Properties and application to photodynamic inactivation of bacteria. ACS Appl Mater Interfaces 7:28027–28034

    Article  CAS  PubMed  Google Scholar 

  25. Bai H, Yuan H, Nie C et al (2015) A supramolecular antibiotic switch for antibacterial regulation. Angew Chem Int Ed 54:13208–13213

    Article  CAS  Google Scholar 

  26. Bazireh E, Sharif M (2020) Polythiophene-coated multi-walled carbon nanotube-reinforced epoxy nanocomposites for enhanced mechanical, electrical and thermal properties. Polym Bull 77:4537–4553

    Article  CAS  Google Scholar 

  27. Sarvari R, Massoumi B, Zareh A et al (2020) Porous conductive and biocompatible scaffolds on the basis of polycaprolactone and polythiophene for scaffolding. Polym Bull 77:1829–1846

    Article  CAS  Google Scholar 

  28. Zeglio E, Rutz AL, Winkler TE et al (2019) Conjugated polymers for assessing and controlling biological functions. Adv Mater 31:1806712

    Article  CAS  Google Scholar 

  29. Zhang P, Xu C, Zhou X et al (2020) Cationic conjugated polymers for enhancing beneficial bacteria adhesion and biofilm formation in gut microbiota. Coll Surf B 188:110815

    Article  CAS  Google Scholar 

  30. Sista P, Ghosh K, Martinez JS et al (2014) Polythiophenes in biological applications. J Nanosci Nanotechnol 14:250–272

    Article  CAS  PubMed  Google Scholar 

  31. Huang Y, Pappas HC, Zhang L et al (2017) Selective imaging and inactivation of bacteria over mammalian cells by imidazolium-substituted polythiophene. Chem Mater 29:6389–6395

    Article  CAS  Google Scholar 

  32. Wang Y, Schanze KS, Chi EY et al (2013) When worlds collide: interactions at the interface between biological systems and synthetic cationic conjugated polyelectrolytes and oligomers. Langmuir 29:10635–10647

    Article  CAS  PubMed  Google Scholar 

  33. Parthasarathy A, Goswami S, Corbitt TS et al (2013) Photophysics and light-activated biocidal activity of visible-light-absorbing conjugated oligomers. ACS Appl Mater Interfaces 5:4516–4520

    Article  CAS  PubMed  Google Scholar 

  34. Ning LG, Wang S, Hu XF et al (2017) Vancomycin-conjugated polythiophene for the detection and imaging of gram-positive bacteria. J Mater Chem B 5:8814–8820

    Article  Google Scholar 

  35. Shao M, He Y, Hong K et al (2013) A water-soluble polythiophene for organic field-effect transistors. Polym Chem 4:5270–5274

    Article  CAS  Google Scholar 

  36. Wang F, Li M, Wang B et al (2015) Synthesis and characterization of water-soluble polythiophene derivatives for cell imaging. Sci Rep 5:7617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Emam HE, Ahmed HB (2021) Antitumor/antiviral carbon quantum dots based on carrageenan and pullulan. Int J Biol Macromol 170:688–700

    Article  CAS  PubMed  Google Scholar 

  38. Muñoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37:281–339

    Article  CAS  Google Scholar 

  39. Zhao Q, Li J, Zhang X et al (2016) Cationic oligo(thiophene ethynylene) with broad-spectrum and high antibacterial efficiency under white light and specific biocidal activity against S. aureus in dark. ACS Appl Mater Interfaces 8:1019–1024

    Article  CAS  PubMed  Google Scholar 

  40. Jennings MC, Minbiole KPC, Wuest WM (2015) Quaternary ammonium compounds: an antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS Infect Dis 1:288–303

    Article  CAS  PubMed  Google Scholar 

  41. Kwaśniewska D, Chen Y-L, Wieczorek D (2020) Biological activity of quaternary ammonium salts and their derivatives. Pathogens 9:459

    Article  CAS  PubMed Central  Google Scholar 

  42. Brown S Jr, Santa Maria Jr JP, Walker S (2013) Wall teichoic acids of gram-positive bacteria. Ann Rev Microbiol 67:313–336

    Article  CAS  Google Scholar 

  43. Rosenfeld Y, Shai Y (2006) Lipopolysaccharide (endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta Biomembr 1758:1513–1522

    Article  CAS  Google Scholar 

  44. Zamani E, Chatterjee S, Changa T et al (2019) Mechanistic understanding of the interactions of cationic conjugated oligo- and polyelectrolytes with Wild-type and Ampicillin-resistant Escherichia coli. Sci Rep 9:20411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Halder S, Yadav KK, Sarkar R et al (2015) Alteration of zeta potential and membrane permeability in bacteria: a study with cationic agents. SpringerPlus 4:672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Choi Y, Hwang JH, Lee SY (2018) Recent trends in nanomaterials-based colorimetric detection of pathogenic bacteria and viruses. Small Methods 2:1700351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. DeBritto S, Gajbar TD, Satapute P et al (2020) Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci Rep 10:1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (21504072, 51741304, and 52073234), Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0363), innovation teams in colleges and universities of Chongqing (CXQT20005) and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqun Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Hao, J., Guo, L. et al. Quaternary ammonium functionalized cationic polythiophene for the detection and imaging of gram-positive bacteria. Polym. Bull. 79, 2747–2761 (2022). https://doi.org/10.1007/s00289-021-03642-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03642-9

Keywords

Navigation