Skip to main content
Log in

Effect of AE-POSS content on the compatibility and mechanical properties of GER/DOPO-POSS composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, the bio-based epoxy nanocomposites (GER/DOPO-POSS) were prepared, and AE-POSS was synthesized and used as compatibilizer for GER/DOPO-POSS nanocomposites. The effects of AE-POSS content on mechanical properties, thermal stability, compatibility and flame retardancy of GER/DOPO-POSS nanocomposites were discussed. The results showed that the addition of AE-POSS significantly improved the dispersity of DOPO-POSS in gallic epoxy matrix. AE-POSS can improve both the thermal stability and flame retardancy of GER/DOPO-POSS nanocomposites. When 6.0 wt % AE-POSS was added in GER/DOPO-POSS, the limiting oxygen index of it was 25.6%, and the initial thermal degradation temperature of it was 36 °C higher than that without AE-POSS.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shao SW, Chen CH, Chan JR, Juang TY, Abu-Omar MM, Lin Ch (2020) Full atom-efficiency transformation of wasted polycarbonates into epoxy thermosets and the catalyst-free degradation of the thermosets for environmental sustainability. Green Chem 22:4683–4696

    Article  CAS  Google Scholar 

  2. Chen CH, Tung SH, Jeng RJ, Abu-Omar MM, Lin CH (2019) A facile strategy to achieve fully bio-based epoxy thermosets from eugenol. Green Chem 21:4475–4488

    Article  CAS  Google Scholar 

  3. Memon H, Liu HY, Rashid MA, Chen L, Jiang QR, Zhang LY, Wei Y, Liu WS, Qiu YP (2020) Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability. Macromolecules 53(2):621–630

    Article  CAS  Google Scholar 

  4. Wang S, MLiXuWangYuanZhouYouZhu SQQXWBBWCSHSSJ (2019) Facile in-situ preparation of high-performance epoxy vitrimers from renewable resources and its application in nondestructively recyclable carbon fiber composites. Macromolecules 21:1484–1497

    CAS  Google Scholar 

  5. Zhang JH, Kong QH, Wang DY (2018) Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation. J Mater Chem A 6:6376–6386

    Article  CAS  Google Scholar 

  6. Sun ZH, Fridrich B, Santi AD, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118:614–678

    Article  CAS  Google Scholar 

  7. Stemmelen M, Pessel F, Lapinte V, Caillol S, Habas JP, Robin JJ (2011) A fully bio-based epoxy resin from vegetable oils: from the synthesis of the precursors by thiolene reaction to the study of the final material. J Polym Sci Polym Chem 49:2434–2444

    Article  CAS  Google Scholar 

  8. Lligadas G, Ronda JC, Galia M, Cadiz V (2006) Development of novel phosphorus-containing epoxy resins from renewable resources. J Polym Sci Polym Chem 44:6717–6727

    Article  CAS  Google Scholar 

  9. Pan X, Sengupta P, Webster DC (2011) High biobased content epoxy-anhydride thermosets from epoxidized sucrose esters of fatty acids. Biomacromol 12:2416–2428

    Article  CAS  Google Scholar 

  10. Pan X, Sengupta P, Webster DC (2011) Novel biobased epoxy compounds: epoxidized sucrose esters of fatty acids. Green Chem 13:965–975

    Article  CAS  Google Scholar 

  11. Baumann H, Bühler M, Fochem H, Hirsinger F, Zoebelein H, Fzlbe J (1988) Natural fats and oils-renewable raw materials for the chemical industry. Angew Chem Int Edit 27:41–62

    Article  Google Scholar 

  12. Zhao S, Huang XN, Whelton AJ, Abu-Omar MM (2018) Renewable epoxy thermosets from fully lignin-derived triphenols. ACS Sustain Chem Eng 6(6):7600–7608

    Article  CAS  Google Scholar 

  13. Liu XQ, Xin WB, Zhang JW (2009) Rosin-based acid anhydrides as alternatives to petrochemical curing agents. Green Chem 11:1018–1025

    Article  CAS  Google Scholar 

  14. Miao JT, Yuan L, Guan QB, Liang GZ, Gu AJ (2017) Bio-based heat resistant epoxy resin with extremely high biomass content from 2,5-furandicarboxylic acid and eugenol. ACS Sustain Chem Eng 5:7003–7011

    Article  CAS  Google Scholar 

  15. Jiang Y, Ding DC, Zhao S, Zhu HY, Kenttämaa HI, Abu-Omar MM (2018) Renewable thermoset polymers based on lignin and carbohydrate derived monomers. Green Chem 20:1131–1138

    Article  CAS  Google Scholar 

  16. Dai JY, Peng YY, Teng N, Liu Y, Liu CC, Shen XB, Mahmud S, Zhu J, Liu XQ (2018) High-performing and fire-resistant bio-based epoxy resin from renewable sources. ACS Sustain Chem Eng 6:7589–7599

    Article  CAS  Google Scholar 

  17. Aouf C, Lecomte J, Villeneuve P, Dubreucq E, Fulcrand H (2012) Chemo-enzymatic functionalization of gallic and vanillic acids: synthesis of bio-based epoxy resins prepolymers. Green Chem 14:2328–2336

    Article  CAS  Google Scholar 

  18. Ramirez SM, Diaz YJ, Campos R, Stone RL, Haddad TS, Mabry JM (2011) Incompletely condensed fluoroalkyl silsesquioxanes and derivatives: precursors for low surface energy materials. J Am Chem Soc 133:20084–20087

    Article  CAS  Google Scholar 

  19. Raftopoulos KN, Pielichowski K (2016) Segmental dynamics in hybrid polymer/POSS nanomaterials. Prog Polym Sci 52:136–187

    Article  CAS  Google Scholar 

  20. Du YG, Gao JG, Yang JB, Liu XQ (2012) Dynamic rheological behavior and mechanical properties of PVC/O-POSS nanocomposites. Polymer-Plastics Technol Eng 51:920–925

    Article  CAS  Google Scholar 

  21. Choi J, Harcup J, Yee AF, Zhu Q, Laine RM (2001) Organic/inorganic hybrid composites from cubic silsesquioxanes. J Am Chem Soc 123:11420–11430

    Article  CAS  Google Scholar 

  22. Choi J, Yee AF, Laine RM (2003) Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy Resins of Octa (dimethylsiloxyethylcyclohexylepoxide) Silsesquioxane. Macromolecules 36:5666–5682

    Article  CAS  Google Scholar 

  23. Zhang WC, Li XM, Yang RJ (2011) Pyrolysis and fire behavior of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS). Polym Degrad Stabil 96:1821–1832

    Article  CAS  Google Scholar 

  24. Liu C, Chen T, Yuan CH, Song CF, Chang Y, Chen GR, Xu YT, Dai LZ (2016) Modification of epoxy resin through the self-assembly of a surfactant-like multi-element flame retardant. J Mater Chem A 4:3462–3470

    Article  CAS  Google Scholar 

  25. Du YG, Gao JG, Yang JB, Liu XQ (2013) Dynamic rheological behavior and mechanical properties of PVC/CPE/MAP-POSS nanocomposites. J Appl Polym Sci 129:174–180

    Article  CAS  Google Scholar 

  26. Zhang JH, Mi XQ, Chen SY, Xu ZJ, Zhang DH, Miao MH, Wang JS (2020) A bio-based hyperbranched flame retardant for epoxy resins. Chem Eng J 381:122719

    Article  CAS  Google Scholar 

  27. Bittmann B, Haupert F, Schlarb AK (2011) Preparation of TiO2/epoxy nanocomposites by ultrasonic dispersion and their structure property relationship. Ultrason Sonochem 18:120–126

    Article  CAS  Google Scholar 

  28. Du YG, Wang YM, Yu YR, Bai ZC, Xi TT, Ren ST (2019) Preparation and properties of gallic epoxy nano-composites modified by DOPO-POSS [J]. China Synthetic Resin and Plastics 36(1):12–17

    CAS  Google Scholar 

  29. Brandalise RN, Zeni M, Martin JDN, Forte MMC (2009) Morphology, mechanical and dynamic mechanical properties of recycled high-density polyethylene and poly (vinyl alcohol) blends. Polym Bull 62:33–43

    Article  CAS  Google Scholar 

  30. Ma SQ, Liu XQ, Jiang YH, Tang ZB, Zhang CZ, Zhu J (2013) Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and commoners. Green Chem 15:245–254

    Article  CAS  Google Scholar 

  31. Ma SQ, Liu XQ, Jiang YH, Fan LB, Feng JX, Zhu J (2014) Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid. Sci China Chem 57:379–388

    Article  CAS  Google Scholar 

  32. Gao JG, Du YG, Dong CF (2010) Rheological behavior and mechanical properties of PVC/MAP-POSS nanocomposites. Polym Comp 31:1822–1827

    Article  CAS  Google Scholar 

  33. Xu XP, Chen S, Tang W, Qu YJ, Wang X (2013) Synthesis and application of uracil derivatives as novel thermal stabilizers for rigid poly (vinyl chloride). Polym Degrad Stabil 98:659–665

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Natural Science Foundation of Hebei Province (No: B2019210221), High School Science and Technology Research Projects of Hebei Province (No: QN2017136) and Undergraduate Research Training Program of Hebei Province (No: 201910107012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Wang, Y., Yu, Y. et al. Effect of AE-POSS content on the compatibility and mechanical properties of GER/DOPO-POSS composites. Polym. Bull. 79, 3541–3553 (2022). https://doi.org/10.1007/s00289-021-03616-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03616-x

Keywords

Navigation