Skip to main content
Log in

Magnesite and dolomite micro-particles: preparation, physical properties and application in bio-based polymer composite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The study describes the potential use of dolomite MgCa(CO3)2 and magnesite MgCO3 carbonates micro-particles to enhance the thermal properties of bio-based polyamide 11 (PA11). These two micro-particle fillers were first carefully analyzed in terms of composition (XRD, XRF, and FTIR), microstructure (SEM) and thermal behavior (TDA/TGA). The incorporation of these mineral fillers to PA11 by extrusion using a coupling agent conducted to an increase in thermal stability compared to the neat matrix based on TGA measurements. SEM investigations revealed that the micro-particles were well distributed and dispersed within PA11, and a good interfacial adhesion with the polymer matrix was also noted. Dolomite and magnesite were successfully used to increase the thermal stability of bio-based PA11. Nevertheless, magnesite was proved to have a higher interaction with the PA11 matrix compared to dolomite by increasing its crystallization temperature based on DSC measurements and further increasing thermal stability for a low filler content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sadik C, Manni A, El Kalakhi S, El Hassani I-EEA (2019) Preparation and characterization of possible basic ceramics from Moroccan magnesite. J Aust Ceram Soc 55:415–423. https://doi.org/10.1007/s41779-018-0249-5

    Article  CAS  Google Scholar 

  2. Matadi R, Hablot E, Wang K, Bahlouli N, Ahzi S, Avérous L (2011) High strain rate behaviour of renewable biocomposites based on dimer fatty acid polyamides and cellulose fibres. Compos Sci Technol 71:674–682. https://doi.org/10.1016/j.compscitech.2011.01.010

    Article  CAS  Google Scholar 

  3. Nayak PL (2000) Natural oil-based polymers: opportunities and challenges. J Macromol Sci Part C Polym Rev 40:1–21. https://doi.org/10.1081/MC-100100576

    Article  Google Scholar 

  4. Fan X-D, Deng Y, Waterhouse J, Pfromm P (1998) Synthesis and characterization of polyamide resins from soy-based dimer acids and different amides. J Appl Polym Sci 68:305

    Article  CAS  Google Scholar 

  5. Reulier M, Avérous L (2015) Elaboration, morphology and properties of renewable thermoplastics blends, based on polyamide and polyurethane synthesized from dimer fatty acids. Eur Polymer J 67:418–427. https://doi.org/10.1016/j.eurpolymj.2014.11.036

    Article  CAS  Google Scholar 

  6. Reulier M, Boumbimba RM, Rasselet D, Avérous L (2016) Renewable thermoplastic multiphase systems from dimer fatty acids, with mineral microfillers. J Appl Polym. Sci 133:n/a-n/a. https://doi.org/10.1002/app.43055

    Article  CAS  Google Scholar 

  7. Sadik C, Moudden O, El Bouari A, El Amrani I-E (2016) Review on the elaboration and characterization of ceramics refractories based on magnesite and dolomite. J Asian Ceram Soc 4:219–233. https://doi.org/10.1016/j.jascer.2016.06.006

    Article  Google Scholar 

  8. Aşkın A, Tatar İ, Kılınç Ş, Tezel Ö (2017) The utilization of waste magnesite in the production of the cordierite ceramic. Energy Procedia 107:137–143. https://doi.org/10.1016/j.egypro.2016.12.151

    Article  CAS  Google Scholar 

  9. Thokala N, Kealey C, Kennedy J, Brady DB, Farrell JB (2017) Characterisation of polyamide 11/copper antimicrobial composites for medical device applications. Mater Sci Eng, C 78:1179–1186. https://doi.org/10.1016/j.msec.2017.03.149

    Article  CAS  Google Scholar 

  10. El Haddar A, Manni A, Azdimousa A, El Amrani El Hassani I-E, Bellil A, Sadik C, Fagel N, El Ouahabi M (2019) Elaboration of a high mechanical performance refractory from halloysite and recycled alumina. Bol Soc Esp Cerám Vidr. https://doi.org/10.1016/j.bsecv.2019.08.002

    Article  Google Scholar 

  11. Manni A, El Haddar A, El Amrani El I-E, Hassani AE, Bouari CS (2019) Valorization of coffee waste with Moroccan clay to produce a porous red ceramics (class BIII). Bol Soc Esp Cerám Vidr 58:211–220. https://doi.org/10.1016/j.bsecv.2019.03.001

    Article  CAS  Google Scholar 

  12. Hablot E, Donnio B, Bouquey M, Avérous L (2010) Dimer acid-based thermoplastic bio-polyamides: reaction kinetics, properties and structure. Polymer 51:5895–5902. https://doi.org/10.1016/j.polymer.2010.10.026

    Article  CAS  Google Scholar 

  13. Ruehle DA, Perbix C, Castañeda M, Dorgan JR, Mittal V, Halley P, Martin D (2013) Blends of biorenewable polyamide-11 and polyamide-6,10. Polymer 54:6961–6970. https://doi.org/10.1016/j.polymer.2013.10.013

    Article  CAS  Google Scholar 

  14. Thomaidis E, Kostakis G (2015) Synthesis of cordieritic materials using raw kaolin, bauxite, serpentinite/olivinite and magnesite. Ceram Int 41:9701–9707. https://doi.org/10.1016/j.ceramint.2015.04.039

    Article  CAS  Google Scholar 

  15. Schacht CA (2004) Refractories handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  16. Hajjaji M (2014) Mineralogia e transformação térmica dos materiais argilosos da região de Marrakech. Marrocos 6:75

    Google Scholar 

  17. Gawande MB, Branco PS, Parghi K, Shrikhande JJ, Pandey RK, Ghumman CAA, Bundaleski N, Teodoro OMND, Jayaram RV (2011) Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications. Catal Sci Technol 1:1653. https://doi.org/10.1039/c1cy00259g

    Article  CAS  Google Scholar 

  18. Farmer VC, Palmieri F (1975) The characterization of soil minerals by infrared spectroscopy. In: Gieseking JE (ed) Soil components. Springer, Berlin, pp 573–670. https://doi.org/10.1007/978-3-642-65917-1_17

    Chapter  Google Scholar 

  19. Riccio M, Montanari T, Castellano M, Turturro A, Negroni FM, Busca G (2007) An IR study of the chemistry of triethoxysilane at the surface of metal oxides. Colloids Surf, A 294:181–190. https://doi.org/10.1016/j.colsurfa.2006.08.010

    Article  CAS  Google Scholar 

  20. Tian L, Tahmasebi A, Yu J (2014) An experimental study on thermal decomposition behavior of magnesite. J Therm Anal Calorim 118:1577–1584. https://doi.org/10.1007/s10973-014-4068-9

    Article  CAS  Google Scholar 

  21. Kıpçak İ, Isıyel TG (2015) Magnesite tailing as low-cost adsorbent for the removal of copper(II) ions from aqueous solution. Korean J Chem Eng 32:1634–1641. https://doi.org/10.1007/s11814-014-0377-8

    Article  CAS  Google Scholar 

  22. Achiou B, Elomari H, Ouammou M, Albizane A, Bennazha J, Younssi SA, Amrani IEE, Aaddane A (2016) Elaboration and characterization of flat ceramic microfiltration membrane made from natural Moroccan pozzolan (Central Middle Atlas). J Mater Environ Sci 7(1):196–204

    CAS  Google Scholar 

  23. Kumar P, Burhanuddin A, Kumar A, Ghosh S, Sinhamahapatra HS (2015) Tripathi, Effect of titania on the microstructure evolution of sintered magnesite in correlation with its properties. Ceram Int 41:9003–9008. https://doi.org/10.1016/j.ceramint.2015.03.236

    Article  CAS  Google Scholar 

  24. Dehas W, Guessoum M, Douibi A (2017) Elaboration et caractérisation d’un matériau composite à matrice polyester insaturé renforcée par la vermiculite, p 3

  25. Sheila D (1993) Thermal analysis studies on the decomposition of magnesite. Int J Miner Process 37:73–88. https://doi.org/10.1016/0301-7516(93)90006-V

    Article  CAS  Google Scholar 

  26. Hablot E, Matadi R, Ahzi S, Avérous L (2010) Renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres: thermal, physical and mechanical properties. Compos Sci Technol 70:504–509. https://doi.org/10.1016/j.compscitech.2009.12.001

    Article  CAS  Google Scholar 

  27. Kim Y-J, Ha S-W, Jeon S-M, Yoo DW, Chun S-H, Sohn B-H, Lee J-K (2010) Fabrication of Triacetyl cellulose−SiO2 Nanocomposites by Surface Modification of Silica Nanoparticles. Langmuir 26:7555–7560. https://doi.org/10.1021/la904362x

    Article  CAS  PubMed  Google Scholar 

  28. Mallakpour S, Naghdi M (2018) Polymer/SiO2 nanocomposites: Production and applications. Prog Mater Sci 97:409–447. https://doi.org/10.1016/j.pmatsci.2018.04.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Matadi Boumbimba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manni, A., Matadi Boumbimba, R., Mikdam, A. et al. Magnesite and dolomite micro-particles: preparation, physical properties and application in bio-based polymer composite. Polym. Bull. 79, 2149–2171 (2022). https://doi.org/10.1007/s00289-021-03609-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03609-w

Keywords

Navigation