Skip to main content
Log in

Selective removal of Cr(III) from aqueous solution using cross-linked polyethylenimine: experimental optimization and modeling

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Batch removal of Cr(III) from aqueous solutions using cross-linked polyethylenimine was investigated under different experimental conditions. The influence of different parameters on the adsorption behavior, including adsorbent dosage (0.02–1.5 g), solution pH (at 3 and 8), initial concentration (10–60 mg L−1), competing ions (U, Pb, As, Se, Hg and Mn) and contact time (10–120 min), has been studied. The selectivity of cross-linked polyethylenimine toward Cr(III) as well as its ability to be regenerated for reuse has been assessed. The modified polymer exhibited high selectivity toward Cr(III) with high removal efficiency of up to 89% in acidic solution and 99% in basic solution and showed similar performance when applied to wastewater samples. The polymer exhibited good potential for reuse, giving good removal efficiency (> 50%) up to three cycles. Langmuir isotherm was found to better describe the equilibrium adsorption data, while adsorption kinetic was conformed to the Pseudo second-order. The thermodynamic modeling indicates that the adsorption occurs via chemisorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pamukoglu MY, Karabuga MC (2018) Removal of Cr(III) ions from wastewater by using ligand adsorption. Environ Eng Sci. https://doi.org/10.1089/ees.2017.0372

    Article  Google Scholar 

  2. WHO (2011) Guidelines for drinking-water quality. WHO library cataloguing-in-publication data. ISBN 978 92 4 154815 1

  3. Mukherjee R, Gebreslassie B, Diwekar UM (2017) Design of novel polymeric adsorbents for metal ion removal from water using computer-aided molecular design. Clean Technol Environ Policy 19:483–499

    Article  CAS  Google Scholar 

  4. El-Kafrawy AF, El-Saeed SM, Farag RK, El-Saied HA, Abdel-Raouf ME (2017) Adsorbents based on natural polymers for removal of some heavy metals from aqueous. Egypt Jpurnal Pet 26:23–32

    Article  Google Scholar 

  5. Sajid M, Nazal MK, Ihsanullah BN, Osman AM (2018) Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: a critical review. Sep Purif Technol 191:400–423

    Article  CAS  Google Scholar 

  6. Bankole MT, Abdulkareem AS, Mohammed et al. (2019) Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Scientific Reports 9. Article number: 4475.

  7. Zander NE (2009) Chelating polymers and environmental remediation, Army research laboratory CR-0623

  8. Ahamed IS, Ghonaim K, Hakim A, Moustafa MM (2008) Synthesis and characterization of some polymers for removing of some heavy metal Ions of industrial wastewater. J Appl Sci Res 4:1946–1958

    CAS  Google Scholar 

  9. Jiang J, Ma XS, Xu LY, Wang LH, Liu GY, Xu QF, Lu JM, Zhang Y (2015) Applications of chelating resin for heavy metal removal from wastewater. e-Polymers 15:161–167. https://doi.org/10.1515/epoly-2014-0192

    Article  CAS  Google Scholar 

  10. Gohdes JW, Duran BL, Clark NC, Robison TW, Smith BF, Sauer NN (2001) Preparation of water-soluble polymers modified with sulphur donors for recovery of heavy metals. J Sep Sci Technol 36:2647–2658. https://doi.org/10.1081/SS-100107217

    Article  CAS  Google Scholar 

  11. Taylor TP, Le QTH, Ehler DS, Sauer NN (2003) Beryllium binding by functionalized polyethylenimine water-soluble polymers. J Sep Sci Technol 38:1141–1160. https://doi.org/10.1081/SS-120018128

    Article  CAS  Google Scholar 

  12. Masotti A, Giuliano A, Ortagi G (2010) Efficient complexation-ultrafiltration process for metal ions removal from aqueous solutions using a novel carboxylated polyethylenimine derivative (PEI-COOH). J Curr Anal Chem 6:37–42. https://doi.org/10.2174/157341110790069673

    Article  CAS  Google Scholar 

  13. Barakat M (2008) Removal of Cu(II), Ni(II), and Cr(III) ions from wastewater using complexation-ultrafiltration technique. J Environ Sci Technol 1:151–156

    Article  CAS  Google Scholar 

  14. Aroua MK, Zuki FM, Sulaiman NM (2007) Removal of chromium ions from aqueous solution by polymer-enhanced ultrafiltration. J Hazard Mater 147:752–758. https://doi.org/10.1016/j.jhazmat.2007.01.120

    Article  PubMed  CAS  Google Scholar 

  15. Balaska F, Bencheikh-Lehocine M, Meniai AH, Chikhi M, Bouledjouidja A (2012) Removal of chromium (III) ions from aqueous solutions by polymer assisted ultrafiltration using experimental and calculation approach. Part 1: optimization of complexation conditions. J Energy Procedia 18:622–631. https://doi.org/10.1016/j.egypro.2012.05.075

    Article  CAS  Google Scholar 

  16. Baharuddin NH, Sulaiman NM, Aroua MK (2014) Unmodified starch as water-soluble binding polymer for chromium ions removal via polymer enhanced ultrafiltration system. J Environ Health Sci Eng 12:1–10. https://doi.org/10.1186/2052-336X-12-61

    Article  Google Scholar 

  17. Saad D, Cukrowska E, Tutu H (2012) Phosphonated cross-linked polyethylenimine for selective removal of uranium ions from aqueous solutions. J Water Sci Technol 66:122–129. https://doi.org/10.2166/wst.2012.133

    Article  CAS  Google Scholar 

  18. Saad D, Cukrowska E, Tutu H (2013) Functionalisation of cross-linked polyethylenimine for the removal of As from mining wastewater. J Water SA 39:257–264

    CAS  Google Scholar 

  19. Saad D, Cukrowska E, Tutu H (2012) Sulfonated cross-linked polyethylenimine for selective removal of mercury from aqueous solutions. J Toxicol Environ Chem 94:1913–1929. https://doi.org/10.1080/02772248.2012.736997

    Article  CAS  Google Scholar 

  20. Saad D, Cukrowska E, Tutu H (2013) Modified cross-linked polyethylenimine for the removal of selenite from mining wastewaters. J Toxicol Environ Chem 95:409–421. https://doi.org/10.1080/02772248.2013.790971

    Article  CAS  Google Scholar 

  21. Saad D, Cukrowska E, Tutu H (2013) Selective removal of mercury from aqueous solutions using thiolated cross-linked polyethylenimine. J Appl Water Sci 3:527–534. https://doi.org/10.1007/s13201-013-0100-7

    Article  CAS  Google Scholar 

  22. Saad D, Cukrowska E, Tutu H (2011) Development and application of cross-linked polyethylenimine for trace metal and metalloid removal from mining and industrial wastewaters. J Toxicol Environ Chem 93:914–924. https://doi.org/10.1080/02772248.2011.575785

    Article  CAS  Google Scholar 

  23. Zhu Q, Shentu B, Liu Q, Weng Z (2006) Swelling behaviour of polyethylenimine - cobalt complex in water. Eur Polym J 42:1417–1422. https://doi.org/10.1016/j.eurpolymj.2005.12.004

    Article  CAS  Google Scholar 

  24. Rivas BL, Maureira M (2007) Poly(2-acrylamido glycolic acid): A water-soluble polymer with ability to interact with metal ions in homogenous phase. J Inorg Chem Commun 10:151–154. https://doi.org/10.1016/j.inoche.2006.10.005

    Article  CAS  Google Scholar 

  25. Kanwal F, Imran M, Mitu L, Rashid Z, Razzaq H (2012) Removal of chromium (III) using synthetic polymers, copolymers and their sulfonated derivatives as adsorbents. E- J Chem 9:621–630. https://doi.org/10.1155/2012/857579

    Article  CAS  Google Scholar 

  26. Deng Q, Chen C, Lei Q, Liang L, Zhang T, Jiang J (2018) Adsorption of aniline from aqueous solution using the grapheneoxide modified attapulgite composites. RSC Adv 8(41):23382–23389. https://doi.org/10.1039/C8RA04143A

    Article  CAS  Google Scholar 

  27. Gunatilake SK (2016) Removal of Cr (III) ions from wastewater using sawdust and rice husk biochar pyrolyzed at low temperature. Int J Innov Educ Res 4:44–54

    Article  Google Scholar 

  28. Zhang X, Lei Q, Wang X, Liang J, Chen C, Luo H, Mou H, Deng Q, Zhang T, Jiang J (2019) Removal of Cr(III) using humic acid-modified attapulgite. J Environ Eng 145(6):04019028

    Article  CAS  Google Scholar 

  29. Pearson R (1968) Hard and soft acids and bases, HSAB, part 1: fundamental principles. J Chem Educ 45:581–587. https://doi.org/10.1021/ed045p643

    Article  CAS  Google Scholar 

  30. Ho YS, Ofomaja AE (2006) Pseudo-second order model for lead ions sorption from aqueous solutions onto palm kernel fiber. J Hazard Mater 129:137–142. https://doi.org/10.1016/j.jhazmat.2005.08.020

    Article  PubMed  CAS  Google Scholar 

  31. Antures WM, Luna AS, Henriques CA, Costa AC (2003) An evaluation of copper biosorption by a brown seaweed under optimized conditions. Electron J Biotechnol 6:174–184. https://doi.org/10.2225/vol6-issue3-fulltext-5

    Article  Google Scholar 

  32. Özcan A, Öncü E, Özcan A (2006) Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite. J Coll Surf 277:90–97

    Article  CAS  Google Scholar 

  33. Hermond HF, Fechner-Levy EJ (2000) Chemical fare and transport in the environment. Academic Press, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia Saad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, D. Selective removal of Cr(III) from aqueous solution using cross-linked polyethylenimine: experimental optimization and modeling. Polym. Bull. 79, 1583–1595 (2022). https://doi.org/10.1007/s00289-021-03578-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03578-0

Keywords

Navigation