Skip to main content
Log in

Ex situ measurement of charge carrier concentration in Nafion by Hall effect

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

There is no controversy regarding the nature of charge carriers in in situ Nafion processes, but still there is controversy regarding charge carriers in ex situ processes. Using Hall voltage measurements, we have shown that valence electrons rather than protons are charge carriers in ex situ processes, contrary to widely accepted assumption that protons are charge carriers in Nafion regardless of a process. Concentration of valence electrons decreases with water uptake, but a graph of valence electron concentration, as a function of water content, is steeper than a graph of inverse volume. This brings us to conclusion that the total number of valence electrons decreases with water uptake. Concentration of valence electrons in ex situ measurements is four orders of magnitude higher than proton concentration in in situ measurements. In ex situ measurements on Nafion, metallic part of the electric circuit blocks proton propagation. On the other hand, in in situ measurements electrons are blocked in Nafion due to a potential barrier of dipole layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Peckham TJ, Schmeisser J, Rodgers M, Holdcroft S (2007) Main-chain, statistically sulfonated proton exchange membranes: the relationships of acid concentration and proton mobility to water content and their effect upon proton conductivity. J Mater Chem 17:3255–3268. https://doi.org/10.1039/b702339a

    Article  Google Scholar 

  2. Schalenbach M, Lueke W, Lehnert W, Stolten D (2016) The influence of water channel geometry and proton mobility on the conductivity of Nafion. Electrochim Acta 214:362–369. https://doi.org/10.1016/j.electacta.2016.08.010

    Article  CAS  Google Scholar 

  3. Sone Y, Ekdinge P, Simonsson D (1996) Proton Conductivity of Nafion 117 as Measured by a Four-Electrode AC Impedance Method. J Electrochem Soc 143:1254–1259. https://doi.org/10.1149/1.1836625

    Article  CAS  Google Scholar 

  4. Sumner JJ, Creager S, Ma JJ, DesMarteau DD (1998) Proton conductivity in Nafion 117 and in a novel bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane. J Electrochem Soc 145:107–110. https://doi.org/10.1149/1.1838220

    Article  CAS  Google Scholar 

  5. Casciola M, Albert G, Sganappa M, Narducci R (2006) On the decay of Nafion proton conductivity at high temperature and relative humidity. J Power Sources 162:141–145. https://doi.org/10.1016/j.jpowsour.2006.06.023

    Article  CAS  Google Scholar 

  6. Cánovas MJ, Sobrados I, Sanz J, Acosta JL, Linares A (2006) Proton mobility in hydrated sulfonated polystyrene: NMR and impedance studies. J Membr Sci 280:461–469. https://doi.org/10.1016/j.memsci.2006.02.001

    Article  CAS  Google Scholar 

  7. Blumenthal G, Cappadonia M, Lehmann M (1996) Investigation of the proton transport in Nafion membranes as a function of direction, temperature and relative humidity. Ionics 2:102–106. https://doi.org/10.1007/BF02375802

    Article  CAS  Google Scholar 

  8. Yuan X, Wang H, Sun JC, Zhang J (2007) AC impedance technique in PEM fuel cell diagnosis—a review. Int J Hydrogen Energy 32:4365–4380. https://doi.org/10.1016/j.ijhydene.2007.05.036

    Article  CAS  Google Scholar 

  9. Spry DB, Fayer MD (2009) Proton transfer and proton concentrations in protonated Nafion fuel cell membranes. J Phys Chem B 113:10210–10221. https://doi.org/10.1021/jp9036777

    Article  CAS  PubMed  Google Scholar 

  10. Zawodzinski TA, Derouin C, Radzinski S, Sherman RJ, Smith TV, Springer TE, Gottesfeld S (1993) Water uptake by and transport through Nafion 117 membranes. J Electrochem Soc 140:1041–1047. https://doi.org/10.1149/1.2056194

    Article  CAS  Google Scholar 

  11. Springer TE, Zawodzinski TA, Wilson S, Gottesfeld SM (1996) Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy. J Electrochem Soc 143:587–599. https://doi.org/10.1149/1.1836485

    Article  CAS  Google Scholar 

  12. Li G, Pickup P (2003) Ionic conductivity of PEMFC electrodes. J Electrochem Soc 150:745–752. https://doi.org/10.1149/1.1611493

    Article  CAS  Google Scholar 

  13. Tang Y, Zhang J, Song C, Liu H, Zhang J, Wang H (2006) Temperature dependent performance and in situ AC impedance of high-temperature PEM fuel cells using the Nafion-112 membrane. J Electrochem Soc 153:2036–2043. https://doi.org/10.1149/1.2337008

    Article  CAS  Google Scholar 

  14. Brunetto C, Moschetto A, Tina G (2009) PEM fuel cell testing by electrochemical impedance spectroscopy. Electr Power Syst Res 79:17–26. https://doi.org/10.1016/j.epsr.2008.05.012

    Article  Google Scholar 

  15. Yuan X, Sun JC, Wang H, Zhang J (2006) AC impedance diagnosis of a 500W PEM fuel cell stack: part II: individual cell impedance. J Power Sources 161:929–937. https://doi.org/10.1016/j.jpowsour.2006.05.003

    Article  CAS  Google Scholar 

  16. Poljak I, Županović P, Barbir F (2018) Measurement of proton concentration in PEM by Hall effect. Fuel Cells 4:408–412. https://doi.org/10.1002/fuce.201700189

    Article  CAS  Google Scholar 

  17. Hall E (1879) On a new action of the magnet on electric currents. Am J Math 2:287–292. https://doi.org/10.2307/2369245

    Article  Google Scholar 

  18. Kittel C (2005) Introduction to solid-state physics, 8th edn. John Wiley & Sons, US, pp 153–156

    Google Scholar 

  19. Zawodzinski T, Springer TE, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S (1993) A comparative study of water uptake by and transport through ionomeric fuel cell membranes. J Electrochem Soc 140:1981–1985. https://doi.org/10.1149/1.2220749

    Article  CAS  Google Scholar 

  20. Liu J, Suraweera N, Keffer DJ, Cui S, Paddison SJ (2010) On the relationship between polymer electrolyte structure and hydrated morphology of perfluorosulfonic acid membranes. J Phys Chem C 114:11279–11292. https://doi.org/10.1021/jp911972e

    Article  CAS  Google Scholar 

  21. Ozmaiana M, Naghdabadi R (2014) Modeling and simulation of the water gradient within a Nafion membrane. Phys Chem Chem Phys 16:3173–3186. https://doi.org/10.1039/C3CP54015D

    Article  Google Scholar 

  22. Zawodzinski T, Neeman M, Sillerud L, Cottesfe S (1991) Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. J Phys Chem 95:6040–6044. https://doi.org/10.1021/j100168a060

    Article  CAS  Google Scholar 

  23. Morris D, Sun X (1993) Water-sorption and transport properties of Nafion 117 H. J Appl Polym Sci 50:1445–1452. https://doi.org/10.1002/app.1993.070500816

    Article  CAS  Google Scholar 

  24. Yang C, Srinivasan S, Bocarsly A, Tulyani S, Benziger J A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J Membr Sci 237:145–161. https://doi.org/10.1016/j.memsci.2004.03.009

  25. Matic H, Lundblad A, Lindberg G, Jacobsson P (2005) In situ micro-Raman on the membrane in a working PEM cell. Electrochem Solid-State Lett 8:A5–A7. https://doi.org/10.1149/1.1828272

    Article  CAS  Google Scholar 

Download references

Funding

Prof. Barbir acknowledges receiving funding from the project STIM-REI, European Observation Network for Territorial Development and Cohesion, Contract Number: KK.01.1.1.01.0003, a project funded by the European Union through the European Regional Development Fund—the Operational Programme Competitiveness and Cohesion 2014–2020 (KK.01.1.1.01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paško Županović.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poljak, I., Županović, P. & Barbir, F. Ex situ measurement of charge carrier concentration in Nafion by Hall effect. Polym. Bull. 79, 1713–1727 (2022). https://doi.org/10.1007/s00289-021-03551-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03551-x

Keywords

Navigation