Skip to main content
Log in

UV-mediated atom transfer radical polymerization of acrolein

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this paper, the polymerization of acrolein (A) via UV-mediated atom transfer radical polymerization (ATRP) is reported. The optimization of the experimental conditions of the polymerization is investigated, and it shows that dimethyl sulfoxide as solvent, ethyl 2-bromoisobutyrate (EBIB) and fluorescein (FL) as catalyst, and [A]0/[EBIB]0/[FL]0 = 200/1/0.1 in the period of 5 h at 47 °C are suitable conditions for the reaction. In this way, the yield of the polymer is 24.5%. The glass transition temperature and melting point of polyacrolein characterized by differential scanning calorimetry are 115.5 °C and 165.7 °C, respectively. At low conversion, the polymerization conforms to be the first-order kinetics reaction. The dependence of polymerization on light source is proved by “on/off” light source experiment. In short, this study opens up a new way for the ATRP of acrolein, and the polyacrolein with abundant aldehyde groups can be used in the fields of biomedical labeling, immobilization carrier and adsorption of organic amines.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Slomkowski S (1998) Polyacrolein containing microspheres: Synthesis, properties and possible medical applications. Prog Polym Sci 23(5):815–874. https://doi.org/10.1016/S0079-6700(97)00053-1

    Article  CAS  Google Scholar 

  2. Savoldelli A, Magna G, Di Natale C, Catini A, Nardis S, Fronczek FR, Smith KM, Paolesse R (2017) β-acrolein-substituted corroles: a route to the preparation of functionalized polyacrolein microspheres for chemical sensor applications. Chem Eur J 23(59):14819–14826. https://doi.org/10.1002/chem.201702380

    Article  CAS  PubMed  Google Scholar 

  3. Rembaum A, Chang M, Richards G, Li M (1984) Structure and immunological properties of polyacrolein formed by means of ionizing radiation and base catalysis. J Polym Sci Pol Chem 22(3):609–621. https://doi.org/10.1002/pol.1984.170220311

    Article  CAS  Google Scholar 

  4. Schulz VRC, Kern W (1956) Polymere acroleine, 2. Mitt. reaktionen und konstitution des disacryls. Macromol Chem Phys 18(1):4–8. https://doi.org/10.1002/macp.1956.020180102

    Article  Google Scholar 

  5. Schulz RC, Cherdron H, Kern W (1957) Die redox-polymerisation des acroleins inwäßrigem medium. polymere acroleine. 6. mitteilung. Macromol Chem Phys 24(1):141–151. https://doi.org/10.1002/macp.1957.020240110

    Article  CAS  Google Scholar 

  6. Schulz VRC, Kern W (1959) Molgewichtsbestimmungen an polyacrolein-thiophenolmercaptalen. polymere acroleine, 13. mitteilung. Macromol Chem Phys 30(1):39–47. https://doi.org/10.1002/macp.1959.020300103

    Article  CAS  Google Scholar 

  7. Schulz VRC, Suzuki S, Cherdron H, Kern W (1962) Die radikalinduzierte polymerisation von acrolein und α-methylacrolein in dimethylformamid. polymere acroleine. 22. Mitt. 1. Macromol Chem Phys 53(1):145–153. https://doi.org/10.1002/macp.1962.020530115

    Article  CAS  Google Scholar 

  8. Blacet FE, Fielding GH, Roof JG (1937) The photolysis of the aliphatic aldehydes. V. acrolein. J Am Chem Soc 59(11):2375–2379

    Article  Google Scholar 

  9. Kumakura M, Suzuki M, Kaetsu I (1984) Properties of functional polymeric microspheres obtained by radiation polymerization of acrolein. J Colloid Interface Sci 97(1):157–165. https://doi.org/10.1016/0021-9797(84)90283-2

    Article  CAS  Google Scholar 

  10. Schulz VRC (1955) Polymere acroleine, I. Mitt. untersuchungen uber die polymerisation des acroleins. Macromol Chem Phys 17(1):62–73. https://doi.org/10.1002/macp.1955.020170107

    Article  CAS  Google Scholar 

  11. Li Y-H, Chen Y-C (2020) Triphenylamine-hexaarylbiimidazole derivatives as hydrogen-acceptor photoinitiators for free radical photopolymerization under UV and LED light. Polym Chem 11(8):1504–1513. https://doi.org/10.1039/c9py01605h

    Article  CAS  Google Scholar 

  12. Karabulut HRF, Mert B, Altinkok C, Karatavuk AO, Acik G, Turkyilmaz M (2020) Synthesis of new bio-based hydrogels derived from bile acids by free-radical photo-polymerization. Polym Adv Technol. https://doi.org/10.1002/pat.5077

    Article  Google Scholar 

  13. Liu B, Zhang Y-Y, Zhang X-H, Du B-Y, Fan Z-Q (2016) Fixation of carbon dioxide concurrently or in tandem with free radical polymerization for highly transparent polyacrylates with specific UV absorption. Polym Chem 7(22):3731–3739. https://doi.org/10.1039/c6py00525j

    Article  CAS  Google Scholar 

  14. Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45(10):4015–4039. https://doi.org/10.1021/ma3001719

    Article  CAS  Google Scholar 

  15. Pan X, Fantin M, Yuan F, Matyjaszewski K (2018) Externally controlled atom transfer radical polymerization. Chem Soc Rev 47(14):5457–5490. https://doi.org/10.1039/c8cs00259b

    Article  CAS  PubMed  Google Scholar 

  16. Treat NJ, Sprafke H, Kramer JW, Clark PG, Barton BE, Read de Alaniz J, Fors BP, Hawker CJ (2014) Metal-free atom transfer radical polymerization. J Am Chem Soc 136(45):16096–16101. https://doi.org/10.1021/ja510389m

    Article  CAS  PubMed  Google Scholar 

  17. Dadashi-Silab S, Pan X, Matyjaszewski K (2017) Phenyl benzo[b]phenothiazine as a visible light photoredox catalyst for metal-free atom transfer radical polymerization. Chemistry 23(25):5972–5977. https://doi.org/10.1002/chem.201605574

    Article  CAS  PubMed  Google Scholar 

  18. Theriot JC, Lim CH, Yang H, Ryan MD, Musgrave CB, Miyake GM (2016) Organocatalyzed atom transfer radical polymerization driven by visible light. Science 352(6289):1082. https://doi.org/10.1126/science.aaf3935

    Article  CAS  PubMed  Google Scholar 

  19. Cole JP, Federico CR, Lim CH, Miyake GM (2019) Photoinduced organocatalyzed atom transfer radical polymerization using low ppm catalyst loading. Macromolecules 52(2):747–754. https://doi.org/10.1021/acs.macromol.8b02688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miyake GM, Theriot JC (2014) Perylene as an organic photocatalyst for the radical polymerization of functionalized vinyl monomers through oxidative quenching with alkyl bromides and visible light. Macromolecules 47(23):8255–8261. https://doi.org/10.1021/ma502044f

    Article  CAS  Google Scholar 

  21. Aydogan C, Yilmaz G, Yagci Y (2017) Synthesis of hyperbranched polymers by photoinduced metal-free ATRP. Macromolecules 50(23):9115–9120. https://doi.org/10.1021/acs.macromol.7b02240

    Article  CAS  Google Scholar 

  22. Allushi A, Jockusch S, Yilmaz G, Yagci Y (2016) Photoinitiated metal-free controlled/living radical polymerization using polynuclear aromatic hydrocarbons. Macromolecules 49(20):7785–7792. https://doi.org/10.1021/acs.macromol.6b01752

    Article  CAS  Google Scholar 

  23. Pearson RM, Lim CH, McCarthy BG, Musgrave CB, Miyake GM (2016) Organocatalyzed atom transfer radical polymerization using N-aryl phenoxazines as photoredox catalysts. J Am Chem Soc 138(35):11399–11407. https://doi.org/10.1021/jacs.6b08068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ryan MD, Pearson RM, French TA, Miyake GM (2017) Impact of light intensity on control in photoinduced organocatalyzed atom transfer radical polymerization. Macromolecules 50(12):4616–4622. https://doi.org/10.1021/acs.macromol.7b00502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu X, Zhang L, Cheng Z, Zhu X (2016) Metal-free photoinduced electron transfer–atom transfer radical polymerization (PET–ATRP) via a visible light organic photocatalyst. Polym Chem 7(3):689–700. https://doi.org/10.1039/c5py01765c

    Article  CAS  Google Scholar 

  26. Kutahya C, Aykac FS, Yilmaz G, Yagci Y (2016) LED and visible light-induced metal free ATRP using reducible dyes in the presence of amines. Polym Chem 7(39):6094–6098. https://doi.org/10.1039/c6py01417h

    Article  CAS  Google Scholar 

  27. Lim CH, Ryan MD, McCarthy BG, Theriot JC, Sartor SM, Damrauer NH, Musgrave CB, Miyake GM (2017) Intramolecular charge transfer and ion pairing in N, N-diaryl dihydrophenazine photoredox catalysts for efficient organocatalyzed atom transfer radical polymerization. J Am Chem Soc 139(1):348–355. https://doi.org/10.1021/jacs.6b11022

    Article  CAS  PubMed  Google Scholar 

  28. Niu T, Jiang J, Li S, Ni B, Liu X, Chen M (2017) Well-defined high-molecular-weight polyacrylonitrile formation via visible-light-induced metal-free radical polymerization. Macromol Chem Phys 218(15):1700169. https://doi.org/10.1002/macp.201700169

    Article  CAS  Google Scholar 

  29. Allushi A, Kutahya C, Aydogan C, Kreutzer J, Yilmaz G, Yagci Y (2017) Conventional type II photoinitiators as activators for photoinduced metal-free atom transfer radical polymerization. Polym Chem 8(12):1972–1977. https://doi.org/10.1039/c7py00114b

    Article  CAS  Google Scholar 

  30. Barner-Kowollik C, Davis TP, Stenzel MH (2004) Probing mechanistic features of conventional, catalytic and living free radical polymerizations using soft ionization mass spectrometric techniques. Polymer 45(23):7791–7805. https://doi.org/10.1016/j.polymer.2004.09.017

    Article  CAS  Google Scholar 

  31. Ricci A, Olejar KJ, Parpinello GP, Kilmartin PA, Versari A (2015) Application of fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Appl Spectrosc Rev 50(5):407–442. https://doi.org/10.1080/05704928.2014.1000461

    Article  CAS  Google Scholar 

  32. Andreyeva IV, Koton MM, Artem’eva VN, Sazanov YN, Fedorova GN (1976) The structure of acrolein polymers. Polym Sci USSR 18(8):1951–1959. https://doi.org/10.1016/0032-3950(76)90376-2

    Article  Google Scholar 

  33. Li Y, Tang J, Liu Y, Li T, Ma D, Gao J, Yang J, Zhou Y, Zhang Y-F (2019) Microwave assisted polymeric modification of graphite oxide and graphite by poly(allyl diazoacetate-co-acrolein). Mater Design 183:108116. https://doi.org/10.1016/j.matdes.2019.108116

    Article  CAS  Google Scholar 

  34. Niu S, Zhou Y, Yu H, Lu C, Han K (2017) Investigation on thermal degradation properties of oleic acid and its methyl and ethyl esters through TG-FTIR. Energy Convers Manage 149:495–504. https://doi.org/10.1016/j.enconman.2017.07.053

    Article  CAS  Google Scholar 

  35. Sharma RK, Kumar R, Singh AP (2019) Metal ions and organic dyes sorption applications of cellulose grafted with binary vinyl monomers. Sep Purif Technol 209:684–697. https://doi.org/10.1016/j.seppur.2018.09.011

    Article  CAS  Google Scholar 

  36. Yan X, Liu X, Qi C, Lin C, Li P, Wang H (2017) Disposal of hexabromocyclododecane (HBCD) by grinding assisted with sodium persulfate. RSC Adv 7(38):23313–23318. https://doi.org/10.1039/c7ra02689g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Hunan Provincial Natural Science Foundation of China (Grant No. 2019JJ50652), Scientific Research Fund of Hunan Provincial Education Department (Grant No. 18C0197) and the Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation (Grant No. 2019CL01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YF., Tang, J., Li, T. et al. UV-mediated atom transfer radical polymerization of acrolein. Polym. Bull. 79, 1057–1068 (2022). https://doi.org/10.1007/s00289-021-03544-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03544-w

Keywords

Navigation