Skip to main content

Advertisement

Log in

Characteristics of silicon carbide sludge-based geopolymers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, metakaolin (MK) with silicon carbide sludge (SiC sludge) was used in the preparation of geopolymers, and its use as a structural material was demonstrated. The production of SiC sludge metakaolin-based (SCM) geopolymers was investigated by using solid/liquid (S/L) ratios of 0.4–1.0 and SiC sludge replacement levels of 0–40% to understand the effects of the geopolymerization process. The results indicated that for SCM geopolymers with SiC sludge replacement levels of 10–40% and a solid–liquid ratio of 1.0, the strength decreased from 70.02 MPa to 48.47 MPa after 56 days of curing. The heat evolution of the first exothermal peak clearly decreased from 990.6 W/g to 835.7 W/g as the SiC sludge content increased from 10 to 40%. After 56 days of curing, the mesopore content decreased from 98.94% to 95.24% in SCM geopolymers with 10% to 40% SiC sludge. After 56 days of curing, SiC sludge replacement levels of 0%, 10% and 40% increased, and the polymerization degree increased to 82.3%, 82.7% and 80.5%, respectively. At a solid–liquid ratio of 1.0, SCM geopolymers with a 10% SiC sludge content exhibited excellent mechanical properties, which accounted for the synergistic effect of the SiC sludge and MK. This study revealed that SCM geopolymers with a SiC sludge replacement level of 10% are beneficial to the geopolymerization process and that they can be used as a structural material.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Karthik A, Sudalaimani K, Vijayakumar CT, Saravanakumar SS (2019) Effect of bio-additives on physico-chemical properties of fly ash-ground granulated blast furnace slag based selfcured geopolymer mortars. J Haz Mat 361:56–63. https://doi.org/10.1016/j.jhazmat.2018.08.078

    Article  CAS  Google Scholar 

  2. Wang JX, Chen KT, Wen BZ, Ben YH, Chen CC (2012) Transesterification of soybean oil to biodiesel using cement as a solid base catalyst. J Taiwan Inst Chem Eng 43:215–219. https://doi.org/10.1016/j.jtice.2011.08.002

    Article  CAS  Google Scholar 

  3. Assi LN, Deaver E, ElBatanouny MK, Ziehl P (2016) Investigation of early compressive strength of fly ash-based geopolymer concrete. Constr Build Mater 112:807–815. https://doi.org/10.1016/j.conbuildmat.2016.03.008

    Article  CAS  Google Scholar 

  4. Davidovits J (1989) Geopolymers and geopolymeric materials. J Therm Anal 35:429–441. https://doi.org/10.1007/BF01904446

    Article  CAS  Google Scholar 

  5. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  6. Li X, Rao F, Song SX, Corona-Arroyo MA, Ortiz-Lara N, Aguilar-Reyes EA (2018) Effects of aggregates on the mechanical properties and microstructure of geothermal metakaolin-based geopolymers. Results Phys 11:267–273. https://doi.org/10.1016/j.rinp.2018.09.018

    Article  Google Scholar 

  7. Liu Y, Yan CJ, Qiu XM, Li D, Wang HQ, Alshameri A (2016) Preparation of faujasite block from fly ash-based geopolymer via in-situ hydrothermal method. J Taiwan Inst Chem Eng 59:433–439. https://doi.org/10.1016/j.jtice.2015.07.012

    Article  CAS  Google Scholar 

  8. Bagci C, Kutyla GP, Kriven WN (2017) Fully reacted high strength geopolymer made with diatomite as a fumed silica alternative. Cera Int 43:14784–14790. https://doi.org/10.1016/j.ceramint.2017.07.222

    Article  CAS  Google Scholar 

  9. Davidovits J (2011) Geopolymer chemistry and applications, 3rd edn. Geopolymer Institute: St. Quentin, France

    Google Scholar 

  10. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf A Physicochem Eng Asp 269:47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060

    Article  CAS  Google Scholar 

  11. Alexiadis A, Alberini F, Meyer ME (2017) Geopolymers from lunar and Martian soil simulants. Adv Space Res 59:490–495. https://doi.org/10.1016/j.asr.2016.10.003

    Article  CAS  Google Scholar 

  12. Xu H, van Deventer J (2002) Geopolymerisation of multiple minerals. Miner Eng 15:1131–1139. https://doi.org/10.1016/S0892-6875(02)00255-8

    Article  CAS  Google Scholar 

  13. Hao HC, Lin KL, Wang DY, Chao SJ, Shiu HS, Cheng TW, Hwang CL (2015) Elucidating characteristics of geopolymer with solar panel waste glass. Environ Eng Manag J 14:79–87. https://doi.org/10.30638/eemj.2015.010

    Article  Google Scholar 

  14. Khale D, Chaudhary R (2007) Mechanism of geopolymerization and factors influencing its development: a review. J Mater Sci 42:729–746. https://doi.org/10.1007/s10853-006-0401-4

    Article  CAS  Google Scholar 

  15. Cao YF, Tao Z, Pan Z, Wuhrer R (2018) Effect of calcium aluminate cement on geopolymer concrete cured at ambient temperature. Constr Build Mater 191:242–252. https://doi.org/10.1016/j.conbuildmat.2018.09.204

    Article  CAS  Google Scholar 

  16. Firdous R, Stephan D, Djobo JNY (2018) Natural pozzolan based geopolymers: a review on mechanical, microstructural and durability characteristics. Constr Build Mater 190:1251–1263. https://doi.org/10.1016/j.conbuildmat.2018.09.191

    Article  CAS  Google Scholar 

  17. Bondar D, Lynsdale CJ, Milestone NB, Hassani N, Ramezanianpour AA (2011) Engineering properties of alkali-activated natural pozzolan concrete. ACI Mater J 0108-M08:1–9

    Google Scholar 

  18. Toniolo N, Rincón A, Roether JA, Ercole P, Bernardo E, Boccaccini AR (2018) Extensive reuse of soda-lime waste glass in fly ash-based geopolymers. Constr Build Mater 188:1077–1084. https://doi.org/10.1016/j.conbuildmat.2018.08.096

    Article  CAS  Google Scholar 

  19. Yazdi MA, Liebscher M, Hempel S, Yang J, Mechtcherine V (2018) Correlation of microstructural and mechanical properties of geopolymers produced from fly ash and slag at room temperature. Constr Build Mater 191:330–341. https://doi.org/10.1016/j.conbuildmat.2018.10.037

    Article  CAS  Google Scholar 

  20. Abbasi SM, Ahmadi H, Khalaj G, Ghasemi B (2016) Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes. Ceram Int 42:15171–15176. https://doi.org/10.1016/j.ceramint.2016.06.080

    Article  CAS  Google Scholar 

  21. Lo KW, Lin KL, Cheng TW, Zhang BX (2019) The influence of sapphire substrate silicon carbide sludge on structural properties of metakaolin-based geopolymers. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.13305

    Article  Google Scholar 

  22. ASTM C109/C109M - 11b Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)

  23. Hardjito D (2005) Development and properties of low-calcium fly ash-based geopolymer concrete. Curtin University of Technology, Perth, Australia

    Google Scholar 

  24. Panias D, Giannopoulou IP, Perraki T (2007) Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Coll Surf A 301:246–254. https://doi.org/10.1016/j.colsurfa.2006.12.064

    Article  CAS  Google Scholar 

  25. Liu FQ, Zheng ML, Ye YS (2020) Formulation and properties of a newly developed powder geopolymer grouting material. Constr Build Mater 258:120304. https://doi.org/10.1016/j.conbuildmat.2020.120304

    Article  CAS  Google Scholar 

  26. Lin KL, Lo KW, Cheng TW, Lin WT, Lin TW (2020) Influence of SiC sludge on the microstructure of geopolymers. Materials 13:2203. https://doi.org/10.3390/ma13092203

    Article  CAS  PubMed Central  Google Scholar 

  27. Lin KL, Lo KW, Cheng TW, Lin WT, Lin TW (2020) Utilization of silicon carbide sludge as metakaolin-based geopolymer materials. Sustainability 12:7333. https://doi.org/10.3390/su12187333

    Article  CAS  Google Scholar 

  28. Hadi MNS, Farhan NA, Sheikh MN (2017) Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Constr Build Mater 140:424–431. https://doi.org/10.1016/j.conbuildmat.2017.02.131

    Article  CAS  Google Scholar 

  29. Hu Y, Liang S, Yang JK, Chen Y, Ye N, Ke Y, Tao SY, Xiao KK, Hu JP, Hou HJ, Fan W, Zhu SY, Zhang YS, Xiao B (2019) Role of Fe species in geopolymer synthesized from alkali-thermal pretreated Fe-rich Bayer red mud. Constr Build Mater 200:398–407. https://doi.org/10.1016/j.conbuildmat.2018.12.122

    Article  CAS  Google Scholar 

  30. Lo KW, Lin KL, Cheng TW, Chang YM, Lan JY (2017) Effect of nano-SiO2 on the alkali-activated characteristics of spent catalyst metakaolin-based geopolymers. Constr Build Mater 143:455–463. https://doi.org/10.1016/j.conbuildmat.2017.03.152

    Article  CAS  Google Scholar 

  31. Nguyen QH, Lorente S, Duhart-Barone A, Lamotte H (2018) Porous arrangement and transport properties of geopolymers. Constr Build Mater 191:853–865. https://doi.org/10.1016/j.conbuildmat.2018.10.028

    Article  CAS  Google Scholar 

  32. Yaghoubi M, Arulrajah A, Disfani MM, Horpibulsuk S, Darmawan S, Wang J (2019) Impact of field conditions on the strength development of a geopolymer stabilized marine clay. Appl Clay Sci 167:33–42. https://doi.org/10.1016/j.clay.2018.10.005

    Article  CAS  Google Scholar 

  33. Henon J, Alzina A, Absi J, Smith DS, Rossignol S (2012) Porosity control of cold consolidated geomaterial foam: temperature effect. Ceram Int 38:77–84. https://doi.org/10.1016/j.ceramint.2011.06.040

    Article  CAS  Google Scholar 

  34. Cheng TW, Lo KW, Lin KL, Lan JY (2019) Study on the effects Nano-SiO2 and spent catalyst ratios on characteristics of metakaolin-based geopolymers. Environ Prog Sustain Energy 38:220–227. https://doi.org/10.1002/ep.12921

    Article  CAS  Google Scholar 

  35. Rakhimova NR, Rakhimov RZ, Morozov VP, Gaifullin AR, Potapova LI, Gubaidullina AM, Osin YN (2018) Marl-based geopolymers incorporated with limestone: a feasibility study. J Non Cryst Solids 492:1–10. https://doi.org/10.1016/j.jnoncrysol.2018.04.015

    Article  CAS  Google Scholar 

  36. Kong DLY, Sanjayan JG, Sagoe-Crentsil K (2007) Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Concr Res 37:1583–1589. https://doi.org/10.1016/j.cemconres.2007.08.021

    Article  CAS  Google Scholar 

  37. Steveson MS, Sagoe-Crentsil K (2005) Relationships between composition, structure and strength of inorganic polymers. Part I. Metakaolin-derived Inorgan Polym J Mater Sci 40:2023–2036. https://doi.org/10.1007/s10853-005-1226-2

    Article  CAS  Google Scholar 

  38. Xu H, Van Deventer JSJ (2003) The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars. Coll Surf A Physicochem Eng Asp 216:27–44. https://doi.org/10.1016/S0927-7757(02)00499-5

    Article  CAS  Google Scholar 

  39. Maekawa H, Maekawa T, Kawamura K, Yokokawa T (1991) The structural groups of alkali silicate glasses determined from 29Si Mas-NMR. J Non-cryst Solid 127:53–64. https://doi.org/10.1016/0022-3093(91)90400-Z

    Article  CAS  Google Scholar 

  40. Wan Q, Rao F, Song SX, García RE, Estrella RM, Patiño CL, Zhang Y (2017) Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem Concr Compos 79:45–52. https://doi.org/10.1016/j.cemconcomp.2017.01.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Science and Technology of the Republic of China, Taiwan, for supporting this research financially (Contract No. MOST-109-2221-E-197-012-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Wei Lo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, KL., Lo, KW. & Cheng, TW. Characteristics of silicon carbide sludge-based geopolymers. Polym. Bull. 79, 843–865 (2022). https://doi.org/10.1007/s00289-021-03536-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03536-w

Keywords

Navigation