Skip to main content
Log in

Morphological and spectroscopical characterization of hyperbranched polyamidoamine–zwitterionic chitosan-encapsulated 5-FU anticancer drug

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Hyperbranched polyamidoamines (PAMAM) have been widely investigated for therapeutic applications but their cytotoxicity caused by their cationic charges limited their spreading use in biomedical applications. Zwitterionic chitosan (ZWCs) is a biocompatible, pH sensitive and nontoxic polymer which can be used to reduce cytotoxicity by covering the PAMAM surface. The complex formed from synthesized PAMAM and ZWCs with different ratios was prepared at pH 7.4. Encapsulation of 5-Fluorouracil by these complexes has successfully been established for high efficiency drug delivery. The complex with ratio (3:1) ZWCs/PAMAM had average size ~ 310 nm and negatively charged at neutral pH confirming the ability of the ZWCs to cover PAMAM surface. The encapsulation efficiency ranged between 100 and 72.5% with loading capacity from 5 to 20% for different initial feed drug concentration 5–20 mg/ml. The release profile of ZWC–PAMAM complex showed sustained drug release up to period of 38 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kolhe P, Misra E, Kannan RM et al (2003) Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 259:143–160. https://doi.org/10.1016/S0378-5173(03)00225-4

    Article  CAS  PubMed  Google Scholar 

  2. Agrawal D (2012) Diagnosis and treatment of colorectal cancer: a review. J Drug Deliv Ther. https://doi.org/10.22270/jddt.v2i3.111

    Article  Google Scholar 

  3. Tiǧli Aydin RS, Pulat M (2012) 5-fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. J Nanomater. https://doi.org/10.1155/2012/313961

    Article  Google Scholar 

  4. Ma Z, Ma R, Wang X et al (2019) Enzyme and PH responsive 5-flurouracil (5-FU)loaded hydrogels based on olsalazine derivatives for colon-specific drug delivery. Eur Polym J 118:64–70. https://doi.org/10.1016/j.eurpolymj.2019.05.017

    Article  CAS  Google Scholar 

  5. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11:1–35. https://doi.org/10.1016/0169-409X(93)90025-Y

    Article  CAS  Google Scholar 

  6. Berger J, Reist M, Mayer JM et al (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    Article  CAS  Google Scholar 

  7. Nam K, Watanabe J, Ishihara K (2004) The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition. Eur J Pharm Sci 23:261–270. https://doi.org/10.1016/j.ejps.2004.07.012

    Article  CAS  PubMed  Google Scholar 

  8. Moustafine RI, Kabanova TV, Kemenova VA, Van Den Mooter G (2005) Characteristics of interpolyelectrolyte complexes of Eudragit E100 with Eudragit L100. J Control Release 103:191–198. https://doi.org/10.1016/j.jconrel.2004.11.031

    Article  CAS  PubMed  Google Scholar 

  9. Amin A, Ahmed EH, Wickleder C, Adlung M, Hashem A, Ayoub MH, Battisha IK (2019) Phosphosilicate–polyamidoamine hyperbranched polymer–Er 3+ nanocomposite toward planar optical waveguide applications. Polym Compos 40:2029–2038. https://doi.org/10.1002/pc.24984

    Article  CAS  Google Scholar 

  10. Liu KC, Yeo Y (2013) Zwitterionic chitosan-polyamidoamine dendrimer complex nanoparticles as a ph-sensitive drug carrier. Mol Pharm 10:1695–1704. https://doi.org/10.1021/mp300522p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zidan TA, Abdelhamid AE, Zaki EG (2020) N-Aminorhodanine modified chitosan hydrogel for antibacterial and copper ions removal from aqueous solutions. Int J Biol Macromol 158:32–42. https://doi.org/10.1016/j.ijbiomac.2020.04.180

    Article  CAS  Google Scholar 

  12. Xu P, Bajaj G, Shugg T et al (2010) Zwitterionic chitosan derivatives for pH-sensitive stealth coating. Biomacromol 11:2352–2358. https://doi.org/10.1021/bm100481r

    Article  CAS  Google Scholar 

  13. Abdelhamid AE, Elawady MM, El-Ghaffar MAA et al (2015) Surface modification of reverse osmosis membranes with zwitterionic polymer to reduce biofouling. Water Sci Technol Water Supply 15:999–1010. https://doi.org/10.2166/ws.2015.055

    Article  CAS  Google Scholar 

  14. Kim NK, Kim J, Shon DJ et al (2019) Synthesis and characterization of biocompatible copolymers containing plant-based cardanol and zwitterionic groups for antifouling and bactericidal coating applications. Eur Polym J 112:688–695. https://doi.org/10.1016/j.eurpolymj.2018.10.034

    Article  CAS  Google Scholar 

  15. Monsalve Y, Sierra L, López BL (2015) Preparation and characterization of succinyl-chitosan nanoparticles for drug delivery. Macromol Symp 354:91–98. https://doi.org/10.1002/masy.201400128

    Article  CAS  Google Scholar 

  16. Zheng Y, Li S, Weng Z, Gao C (2015) Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev 44:4091–4130. https://doi.org/10.1039/c4cs00528g

    Article  CAS  PubMed  Google Scholar 

  17. Şenel M, Çevik E (2012) A novel amperometric hydrogen peroxide biosensor based on pyrrole-PAMAM dendrimer modified gold electrode. Curr Appl Phys 12:1158–1165. https://doi.org/10.1016/j.cap.2012.02.040

    Article  Google Scholar 

  18. Jasmine MJ, Kavitha M, Prasad E (2009) Effect of solvent-controlled aggregation on the intrinsic emission properties of PAMAM dendrimers. J Lumin 129:506–513. https://doi.org/10.1016/j.jlumin.2008.12.005

    Article  CAS  Google Scholar 

  19. Jaiswal S, Dutta PK, Kumar S et al (2019) Methyl methacrylate modified chitosan: Synthesis, characterization and application in drug and gene delivery. Carbohydr Polym 211:109–117. https://doi.org/10.1016/j.carbpol.2019.01.104

    Article  CAS  PubMed  Google Scholar 

  20. Stobinski L, Lesiak B, Malolepszy A et al (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom 195:145–154. https://doi.org/10.1016/j.elspec.2014.07.003

    Article  CAS  Google Scholar 

  21. Su P, Wang S, Shi Y, Yang Y (2013) Application of cellulase-polyamidoamine dendrimer-modified silica for microwave-assisted chitosan enzymolysis. Process Biochem 48:614–619. https://doi.org/10.1016/j.procbio.2013.03.007

    Article  CAS  Google Scholar 

  22. Tummala S, Satish Kumar MN, Prakash A (2015) Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi Pharm J 23:308–314. https://doi.org/10.1016/j.jsps.2014.11.010

    Article  PubMed  Google Scholar 

  23. Kumar S, Koh J (2012) Physiochemical, optical and biological activity of chitosan-chromone derivative for biomedical applications. Int J Mol Sci 13:6103–6116. https://doi.org/10.3390/ijms13056102

    Article  CAS  Google Scholar 

  24. Moghazy RM, Labena A, Husien S et al (2020) Neoteric approach for efficient eco-friendly dye removal and recovery using algal-polymer biosorbent sheets: characterization, factorial design, equilibrium and kinetics. Int J Biol Macromol 157:494–509. https://doi.org/10.1016/j.ijbiomac.2020.04.165

    Article  CAS  PubMed  Google Scholar 

  25. Wang RB, Yuan WZ, Zhu XY (2015) Aggregation-induced emission of non-conjugated poly(amido amine)s: discovering, luminescent mechanism understanding and bioapplication. Chin J Polym Sci (Engl Ed) 33:680–687. https://doi.org/10.1007/s10118-015-1635-x

    Article  CAS  Google Scholar 

  26. Niu Y, Qu R, Chen H et al (2014) Synthesis of silica gel supported salicylaldehyde modified PAMAM dendrimers for the effective removal of Hg(II) from aqueous solution. J Hazard Mater 278:267–278. https://doi.org/10.1016/j.jhazmat.2014.06.012

    Article  CAS  PubMed  Google Scholar 

  27. Klaykruayat B, Siralertmukul K, Srikulkit K (2010) Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric. Carbohydr Polym 80:197–207. https://doi.org/10.1016/j.carbpol.2009.11.013

    Article  CAS  Google Scholar 

  28. Qie F, Zhang G, Hou J et al (2012) Extracting genomic DNA of foodstuff by polyamidoamine (PAMAM)-magnetite nanoparticles. Talanta 93:166–171. https://doi.org/10.1016/j.talanta.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  29. Zhang C, Su P, Umar Farooq M et al (2010) Synthesis of polyamidoamine dendrimer-grafted silica with microwave assisted protocol. React Funct Polym 70:129–133. https://doi.org/10.1016/j.reactfunctpolym.2009.11.005

    Article  CAS  Google Scholar 

  30. Tsubokawa N, Takayama T (2000) Surface modification of chitosan powder by grafting of `dendrimer-like’ hyperbranched polymer onto the surface. React Funct Polym 43:341–350. https://doi.org/10.1016/S1381-5148(99)00065-6

    Article  CAS  Google Scholar 

  31. Hayati B, Maleki A, Najafi F et al (2016) Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni2 +, Zn2 +, As3 +, Co2 +) removal from wastewater. J Mol Liq 224:1032–1040. https://doi.org/10.1016/j.molliq.2016.10.053

    Article  CAS  Google Scholar 

  32. Moaddab M, Nourmohammadi J, Rezayan AH (2018) Bioactive composite scaffolds of carboxymethyl chitosan-silk fibroin containing chitosan nanoparticles for sustained release of ascorbic acid. Eur Polym J 103:40–50. https://doi.org/10.1016/j.eurpolymj.2018.03.032

    Article  CAS  Google Scholar 

  33. Zheng Z, Zhang L, Kong L et al (2009) The behavior of MC3T3-E1 cells on chitosan/poly-L-lysine composite films: effect of nanotopography, surface chemistry, and wettability. J Biomed Mater Res Part A 89:453–465. https://doi.org/10.1002/jbm.a.31979

    Article  CAS  Google Scholar 

  34. Jirawutthiwongchai J, Klaharn IY, Hobang N et al (2016) Chitosan-phenylalanine-mPEG nanoparticles: from a single step water-based conjugation to the potential allergen delivery system. Carbohydr Polym 141:41–53. https://doi.org/10.1016/j.carbpol.2015.12.076

    Article  CAS  PubMed  Google Scholar 

  35. Aziz SB, Rasheed MA, Abidin ZHZ (2017) Optical and electrical characteristics of silver ion conducting nanocomposite solid polymer electrolytes based on chitosan. J Electron Mater 46:6119–6130. https://doi.org/10.1007/s11664-017-5515-8

    Article  CAS  Google Scholar 

  36. Aziz SB (2017) Morphological and optical characteristics of chitosan(1–x): Cuox (4 ≤ x ≤ 12) based polymer nano-composites: optical dielectric loss as an alternative method for tauc’s model. Nanomaterials 7:444. https://doi.org/10.3390/nano7120444

    Article  CAS  PubMed Central  Google Scholar 

  37. Zhang Z, Hatta H, Ito T, Nishimoto SI (2005) Synthesis and photochemical properties of photoactivated antitumor prodrugs releasing 5-fluorouracil. Org Biomol Chem 3:592–596. https://doi.org/10.1039/b417734g

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr A.P. Filippov, S.V. Valueva and A.A. Kutin; Institute of Macromolecular Compounds, Russian Academy of Sciences for their potential efforts in electron microscopy, Uv-spectroscopy and Dynamic light scattering measurements in this work. Also, the authors would like to acknowledge Science, Technology and Innovation Funding Authority STIFA for its grant No. 26599.

Funding

This research is supported by the grants of Sciences, Technology and innovation Funding Authority (STIFA) No.26599 and the Russian Foundation for Basic Research (RFBR) No.17–53-61026 Egypt a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman H. Ahmed.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, E.H., Abdelhamid, A.E., Vylegzhanina, M.E. et al. Morphological and spectroscopical characterization of hyperbranched polyamidoamine–zwitterionic chitosan-encapsulated 5-FU anticancer drug. Polym. Bull. 79, 137–155 (2022). https://doi.org/10.1007/s00289-020-03495-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03495-8

Keywords

Navigation