Skip to main content
Log in

A review on polyimide reinforced nanocomposites for mechanical, thermal, and electrical insulation application: challenges and recommendations for future improvement

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyimide nanocomposites have drawn much attention as mechanical, thermal, and electrical insulation materials due to its superior dielectric, thermal stability, and corona resistance properties. The polyimide nanocomposites are defined as substance of polyimide matrix reinforced with certain weight percent of nanofillers. Researchers have demonstrated the usage of polyimide nanocomposites in mechanical, thermal, and electrical insulation application. However, the nanocomposites are noted to face interfacial bonding issues, which have affected their mechanical performance for thermal and electrical insulation properties. The dielectric behaviour and corona resistance lifetime of the polyimide nanocomposites are reportedly degraded over a long-term exposure to high-temperature environment. Although, there have been an advancement on improving the mechanical, thermal, and electrical properties of polyimide nanocomposites for multifunctional insulations. This review summarises the effects of nanofillers, such as silica (SiO2), titania (TiO2), alumina (Al2O3), graphene’s, nanotubes, boron nitride and some other fillers on the mechanical, thermal, and electrical properties of polyimide nanocomposites for insulation application. The authors concluded the review with advancement, challenges and recommendations for future improvement of polyimide nanocomposites as an insulation material. Thus, the review study offers discernment into the improvement and selection of polyimide nanocomposites material for mechanical, thermal, and electrical insulation. More so, the review will also give a way for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Harito C (2017) UV radiation resistant polyimide based composites reinforced with nanostructured titanate particles: preparation and properties. PhD dissertation, University of Southampton

  2. Rajib M, Martinez R, Shuvo M, Karim H, Delfin D, Afrin S, Rodriguez G, Chintalapalle R, Lin Y (2015) Enhanced energy storage of dielectric nanocomposites at elevated temperatures. Int J Appl Ceram Technol. https://doi.org/10.1111/ijac.12410

    Article  Google Scholar 

  3. Izzati WA, Arief YZ, Adzis Z, Shafanizam M (2014) Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends. Sci World J 2014:1–14

    Google Scholar 

  4. Shen Y, Lin H, Nan CW (2007) Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell - structured particles. Adv Funct Mate 17:2405–2410

    CAS  Google Scholar 

  5. Song Z, Zhan H, Zhou Y (2010) Polyimides: promising energy-storage materials. Angew Chem 49:8444–8448

    CAS  Google Scholar 

  6. Ree M (2006) High performance polyimides for applications in microelectronics and flat panel displays. Macromol Res 14(1):1–33

    CAS  Google Scholar 

  7. Fazil S, Saeed S, Waseem M, Rehman W, Bangesh M, Liaqat K (2018) Improving mechanical, thermal, and electrical properties of polyimide by incorporating vinyltriethoxysilane functionalized graphene oxide. Polym Compos 39:E1635–E1642

    CAS  Google Scholar 

  8. Shao T, Zhang C, Long K, Zhang D, Wang J, Yan P, Zhou Y (2010) Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air. Appl Surf Sci 256:3888–3894

    CAS  Google Scholar 

  9. Dianham S, Locatelli M, Khazaka R (2012) BPDA-PDA polyimide synthesis, characterizations, aging and semiconductor device passivation. In: Abadie MJM (ed) High performance polymers-polyimides based – from chemistry to application. InTech, UK. https://doi.org/10.5772/53994

    Chapter  Google Scholar 

  10. Lau KSY (2014) High-performance polyimides and high temperature resistant polymers. In: Handbook of thermoset plastics, 3rd edn. William Andrew Publishing, USA, pp. 297–424. https://doi.org/10.1016/b978-1-4557-3107-7.00010-5

  11. Yuzhan L, Michael RK (2014) Creep-resistant behaviour of self-reinforcing liquid crystalline epoxy resins. Polym 55(8):2021–2027

    Google Scholar 

  12. Wenjia H, Du BX, Jie L, Yong L, Meng L (2012) Electrical and mechanical characteristics of polyimide nanocomposite films for wind generator. Paper presented at IEEE Power and Energy Society Innovative Smart Grid Technology (ESC ISGT) ASIA, 21–24 May 2012, p 1569527791

  13. Qu C, Hu J, Liu X, Li Z, Ding Y (2017) Morphology and mechanical properties of polyimide films: the effects of UV irradiation on microscale surface. Materials 10:1329

    PubMed Central  Google Scholar 

  14. Feng Y, Yin J, Chen M, Liu X, Su B, Fei W, Lei Q (2014) Influence of interface on the electrical properties of polyimide/TiO2 composite films. IEEE Trans Dielectr Electr Insul 21:1501–1508

    CAS  Google Scholar 

  15. Zhang P, Zhao J, Zhang K, Bai R, Wang Y, Hua C, Wu Y, Liu X, Xu H, Li Y (2016) Fluorographene/polyimide composite films: Mechanical, electrical, hydrophobic, thermal and low dielectric properties. Compos Part A Appl Sci Manuf 84:428–434. https://doi.org/10.1016/j.compositesa.2016.02.019

    Article  CAS  Google Scholar 

  16. Li JL, Yin JH, Ji T, Feng Y, Liu YY, Zhao H, Li YP, Zhu CC, Yue D, Su B, Liu XX (2019) Microstructure evolution effect on high-temperature thermal conductivity of LDPE/BNNS investigated by in-situ SAXS. Mater Lett 234:74–78

    CAS  Google Scholar 

  17. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338

    PubMed  Google Scholar 

  18. Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H (2008) Tunneling effect in polymer/carbon nanotubes nanocomposite strain sensor. Acta Mater 56:2929–2936

    CAS  Google Scholar 

  19. Gupta SK, Gupta R, Singh P, Kumar V, Jaiswal MK, Chakarvarti SK, Kumar R (2017) Modifications in physico-chemical properties of 100 MeV oxygen ions irradiated polyimide Kapton-H polymer. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 406:188–192

    CAS  Google Scholar 

  20. Mansor BA, Yadollah G, Mohd Sapuan S, Mohd Zobir H, Saeideh E, Arash D (2012) Preparation, characterization and thermal degradation of polyimide (4-PS/BTDA)/SiO2 composite films. Int J Molecular Sci 13:4860–4872

    Google Scholar 

  21. Lau KY, Piah MAM (2011) Polymer nanocomposites in high voltage electrical insulation perspective: a review. Malaysian Polym J 6:58–69

    Google Scholar 

  22. Min C, Liu D, He Z, Qian J, Song H, Jia W, Zhang K (2019) Novel polyimide nanocomposites enhanced by covalent modified graphene nanosheets based on Friedel-Crafts reaction. J Mater Sci 54:5484–5497

    CAS  Google Scholar 

  23. Yan W, Zhang Y, Huawei S, Liu S, Chi Z, Chen XD, Xu J (2014) Polyimide nanocomposites with boron nitride-coated multi-walled carbon nanotubes for enhanced thermal conductivity and electrical insulation. J Mater Chem A 2(48):20958–20965. https://doi.org/10.1039/C4TA04663C

    Article  CAS  Google Scholar 

  24. Zha J, Dang Z (2009) Properties and applications of dielectric materials. Icpadm IEEE Int Conf pp 796–799

  25. Lin J, Wang Y, Yang W, Lu H (2017a) Balance of mechanical and electrical performance in polyimide/ nano titanium dioxide prepared by an in-sol method. J Appl Polym Sci 134:14666

    Google Scholar 

  26. Liu Y, Yin J, Liu X, Zhao X, Chen M, Li J, Zhao H, Zhu C, Su B (2019) Fabrication of polymer composite films with carbon composite nanofibers doped MWNTs-OH for multilevel memory device application. Compos Part B 156:252–258

    CAS  Google Scholar 

  27. Du BX, Li J, Du W (2013) Surface charge accumulation and decay on direct-fluorinated polyimide/Al2O3 nanocomposites. IEEE Trans Dielectr Electr Insul 20(5):1764–1771

    CAS  Google Scholar 

  28. Minaei S, Abdollahifar M, Shojaeimehr T, Kumar D (2020) Micro/mesoporous quasi-zero-dimensional AlOOH and Al2O3 nanoparticles. Inorganic and nano-metal chemistry 50(3):170–177

    CAS  Google Scholar 

  29. Liaw W, Cheng Y, Liao Y, Chen C, Lai S (2011) Complementary functionality of SiO2 and TiO2 in polyimide/silica–titania ternary hybrid nanocomposites. Polym J 43:249–257

    CAS  Google Scholar 

  30. Tsai MH, Liu SJ, Chiang PC (2006) Synthesis and characteristics of polyimide/titania nano hybrid films. Thin Solid Films 515:1126–1131

    CAS  Google Scholar 

  31. Luong ND, Hippi U, Korhonen JT, Soininen AJ, Ruokolainen J, Leena-Sisko J, Jae-Do N, Sinh LH, Seppala J (2011) Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer 52:5237–5242

    Google Scholar 

  32. High power motor, https://www.pololu.com/product/1457

  33. Tsai MH, Huang YC, Tseng IH, Yu HP, Lin YK, Huang SL (2011) Thermal and mechanical properties of polyimide/nano-silica hybrid films. Thin Solid Films 15:5238–5242

    Google Scholar 

  34. Deng YY, Wu M, Liu XY, Gu Y (2010) Novel inorganic morphologies formed in polyimide/silica hybrid films. Eur Polym J 46(12):2255–2260

    CAS  Google Scholar 

  35. Yeganeh H, Tamami B, Ghazi I (2002) Synthesis and properties of novel diisocyanate based optically active polyimides. Eur Polym J 38(11):2179–2185

    CAS  Google Scholar 

  36. Watanabe Y, Shibasaki Y, Ando S, Ueda M (2005) Synthesis and characterization of polyimides with low dielectric constants from aromatic dianhydrides and aromatic diamine containing phenylene ether unit. Polymer 46(16):5903–5908

    CAS  Google Scholar 

  37. Zhang Q, Li S, Li W, Zhang S (2007) Synthesis and properties of novel organosoluble polyimides derived from 1,4-bis[4-(3,4-dicarboxylphenoxy)]triptycene dianhydride and various aromatic diamines. Polym 48(21):6246–6253

    CAS  Google Scholar 

  38. Ghaemy M, Alizadeh R, Behmadi H (2009) Synthesis of soluble and thermally stable polyimide from new diamine bearing N-[4-(9H-carbazol-9-yl)phenyl] formamide pendent group. Eur Polym J 45(11):3108–3115

    CAS  Google Scholar 

  39. Li MK, Fan MW, Zhang YF, Liang H, Yang L, Yu TQ, Yang J, Huang J, Fan KJ, Xiong YQ, Qi W, Zuo C, Zhang LG, Liu T (2016) A novel design of insulated core transformer high voltage power supply. Proceedings of RuPAC2016, St. Petersburg, Russia, pp 623–625

  40. Haque SKM, Rey JAA, Masúd AA, Umar Y, Albarracin R (2017) Electrical properties of different polymeric materials and their applications: the influence of electric field. Intech Open, UK, pp 41–63. https://doi.org/10.5772/67091

    Book  Google Scholar 

  41. Uyor UO, Popoola API, Popoola OM, Aigbodion VS (2020) Polymeric cladding materials under high temperature from optical fibre perspective: a review. Polym Bull 77:2155–2177

    CAS  Google Scholar 

  42. Mihailov S, Grobnic D, Smelser C, Walker R (2009) Grating-inscription technique eliminates need for fiber stripping and recoating. In proceedings of the society of photo-optical instrumentation engineers, pp. 1–2. https ://doi.org/https://doi.org/10.1117/2.1200901.1502

  43. Paşahan A (2012) Sensor applications of polyimides. In: Abadie MJ (ed) High performance polymers- polyimides based - from chemistry to applications. IntechOpen, UK . https://doi.org/10.5772/53456

    Chapter  Google Scholar 

  44. Georgiev A, Dimov D, Spassova E, Assa J, Dineff P, Danev G (2012) Chemical and physical properties of polyimides: biomedical and engineering applications. In: Abadie MJ (ed) High performance polymers - polyimides based - from chemistry to applications. IntechOpen, UK

    Google Scholar 

  45. Changzi Q, Junsong H, Xing L, Zheng L (2017) Yanhuai D (2017) morphology and mechanical properties of polyimide films: the effects of UV irradiation on microscale surface. Mater 10:1329

    Google Scholar 

  46. Song J, Yu Y, Zhao G, Qiu J, Ding Q (2020) Comparative study of tribological properties of insulated and conductive polyimide composites. Frictn 8(3):507–516

    CAS  Google Scholar 

  47. Diaham S (2010) Dielectric breakdown of polyimide films: Area, thickness and temperature dependence. IEEE Trans Dielectr Electr Insul 17(1):18–27

    CAS  Google Scholar 

  48. Stefan C, Ion S, Valentina-Elena M, Maria B (2011) Dielectric and conduction properties of polyimide films. Semicond Conf Int 2:253–256

    Google Scholar 

  49. Schwertz M, Lemonnier S, Barraud E, Carrado A, Vallat MF, Nardin M (2015) Spark plasma sintering technology applied to polymer-based composites for structural light weighting. Powd metallur 58(2):87–90

    CAS  Google Scholar 

  50. Huang C, Li J, Xie G, Han F, Huang D, Fan Z, Zhang B, Zhang G, Sun R, Wong C-P (2019) Low-dielectric constant and low-temperature curable polyimide/poss nanocomposites. Macromol Mater Eng 304:1900505

    CAS  Google Scholar 

  51. Taherian R (2019) Application of polymer-based composites. Electrical conductivity in polymer-based composites: experiments, modelling, and applications. In: Plastics Design Library. William Andrew Publishing, pp 131–181. https://doi.org/10.1016/B978-0-12-812541-0.00006-9

  52. Shamiryan D, Abell T, Iacopi F, Maex K (2004) Low-k dielectric materials. Mater Today 7:34–39

    CAS  Google Scholar 

  53. Choudhury AK, Bhowmick CO, Soddemann M (2010) Effect of various nanofillers on thermal stability and degradation kinetics of polymer nanocomposites. J Nanosci Nanotechnol 10:5056–5071

    CAS  PubMed  Google Scholar 

  54. Sharad PA, Kumar KS (2017) Application of surface-modified XLPE nanocomposites for electrical insulation partial discharge and morphological study. Nanocompos 3(1):30–41

    CAS  Google Scholar 

  55. Deka BK, Maji TK (2012) Effect of silica nanopowder on the properties of wood flour/polymer composite. Polym Eng Sci 52:1516–1523

    CAS  Google Scholar 

  56. Wahab MA, KIM I, HA CS, (2003) Microstructure and properties of polyimide/poly(vinylsilsesquioxane) hybrid composite films. Polym 44:4705–4713

    CAS  Google Scholar 

  57. Qiu FX, Zhou YM, Liu JZ (2004) Synthesis and characteristic study of 6FDA-6FHP-NLO polyimide/SiO2 nanohybrid materials. Euro Polym J 40:713–720

    CAS  Google Scholar 

  58. Peihong Z, Weiguo Z, Yan L, Yong F, Qingquan L (2003) Study on corona-resistance of polyimide-nano inorganic composites. In proceedings of the 7th International Conference on properties and applications of dielectric materials

  59. Tao Y, Zheng F, Chen Z, Chen S, Lu X, Lu Q (2017) Comparison of hybrid polyimide films with silica and organosilica obtained via sol–gel process. High Perform Polym 29(9):1049–1057

    CAS  Google Scholar 

  60. Zhang T, Han BJ, Yu J, Wang XD, Huang P (2018) Enhancement of dielectric constant of polyimide by doping with modified silicon dioxide@titanium carbide nanoparticles. RSC Adv 8:16696–16702

    CAS  Google Scholar 

  61. Liang M, Wang Y, Sun S, Yang W (2020) Effect of nanosilica with different interfacial structures on mechanical properties of polyimide/SiO2 composites. J Appl Polym Sci 137:48595

    CAS  Google Scholar 

  62. Wang Y, Yang W, Liu X, Lin J, Sun H (2020) Effect of bonded interfacial structure on mechanical properties of polyimide/SiO2 composites: Molecular dynamics simulations. Macromol Theory Simul 29:1900045

    CAS  Google Scholar 

  63. Seo K, Nam KH, Lee S, Han H (2020) Low stress polyimide/silica nanocomposites as dielectrics for wafer level chip scale packaging. Mater Lett 263:127204

    CAS  Google Scholar 

  64. Gao W, Yang Z, Li K, Fei Z, Chen G, Zhao S (2019) preparation and characterization of polyimide fiber reinforced silica aerogel. Mater Rep 33(4):714–718

    Google Scholar 

  65. Lee JH, Im JS, Song KW, Lee JO, Yoshinaga K (2004) Preparation of polyimide/silica hybrid composites based on polymer-modified silica gel. J Macromolecular Sci Part A 41(11):1345–1357

    Google Scholar 

  66. Fan W, Zhang X, Zhang Y, Zhang Y, Liu T (2019) Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos Sci Technol 173:47–52

    CAS  Google Scholar 

  67. Xiaowen L, Huawei Z, Pengbo L (2015) Structure and dielectric properties of polyimide/silica nanocomposite nanofoam prepared by solid-state foaming. J Appl Polym Sci 132:42355

    Google Scholar 

  68. Yuanliang Z, Xiaowen Q, Yu D, Jian M, Qinglong Z, Laizhou S, Yulin Y, Qingxiang Y (2016) Mechanical, thermal and tribological properties of polyimide/nano-SiO2 composites synthesized using an in-situ polymerization. Tribol Int 103:599–608

    Google Scholar 

  69. Tommalieh MJ, Zihlif AM, Ragosta G (2011) Electrical and thermal properties of polyimide/ silica nanocomposite. J Exper Nanosci 6(6):652–664

    CAS  Google Scholar 

  70. Liu L, Lv F, Li P, Ding L, Tong W, Chu PK, Zhang Y (2016) Preparation of ultra-low dielectric constant silica/polyimide nanofiber membranes by Electrospinning. Compos Part A 84:292–298

    CAS  Google Scholar 

  71. Butta E, Livi A, Levita G, Rolla P (1995) Dielectric analysis of an epoxy resin during cross-linking. J Polym Sci Part B Polym Phys 33(16):2253–2261

    CAS  Google Scholar 

  72. Kim Y-J, Kim J-H, Ha S-W, Kwon D, Lee J-K (2014) Polyimide nanocomposites with functionalized SiO2 nanoparticles: enhanced processability, thermal and mechanical properties. RSC Adv 4:43371–43377

    CAS  Google Scholar 

  73. Mustafa Ç, Emre A (2019) Wear, thermal, and physical properties of fluorine-containing polyimide/ silica hybrid nanocomposite coatings. J Appl Polym Sci 136:47399

    Google Scholar 

  74. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874

    CAS  Google Scholar 

  75. Reijnders L (2009) The release of TiO2 and SiO2 nanoparticles from nanocomposites. J Polym Degrad Stabil 94:873–876

    CAS  Google Scholar 

  76. Pelaez M, Nolan NT, Pillai SC, Seery M, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’shea KE, Entezari MH, Dionysious DD (2012) A Review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Cataly B Environ 125:331–349

    CAS  Google Scholar 

  77. Haowei L, Jiaqi L, Wenlong Y, Lizhu L, Yu W, Gaoru C, Wei H (2017) Effect of nano-TiO2 surface modification on polarization characteristics and corona aging performance of polyimide nano-composites. J Appl Polym Sci 134:45101

    Google Scholar 

  78. Asif M, Li Q, Liu T, Xiao Y, Shu X, Zhang K, Wang Z. (2018) Effect of TiO2 nanoparticle on partial discharge characteristics and lifetime of polyimide films under high frequency voltage. In: Abstracts of the12th International Conference on the properties and applications of dielectric materials (ICPADM). https://doi.org/10.1109/icpadm.2018.8401194

  79. Ram L, Bhupendra SR, Gaur MS (2012) Structural and polarization properties of polyimide/TiO2 nanocomposites. Ionics 18(6):565–572

    Google Scholar 

  80. Feng Y, Jinghua Y, Minghua C, Mingxin S, Bo S, Qingquan L (2013) Effect of nano-TiO2 on the polarization process of polyimide/TiO2 composites. Mater Lett 96:113–116

    CAS  Google Scholar 

  81. Lin J, Wang Y, Yang W, Lu H (2017b) Balance of mechanical and electrical performance in polyimide/nano titanium dioxide prepared by an in-sol method. J Appl Polym Sci 134(13):44666

    Google Scholar 

  82. Zha JW, Song HT, Dang ZM, Shi CY, Bai J (2008) Mechanism analysis of improved corona-resistant characteristic in polyimide/TiO2 nanohybrid films. Appl Phys Lett 93:192911

    Google Scholar 

  83. Li Y, Yang C, Li N, Jinghua Y, Feng Y, Liu Y, Li J, Zhao H, Yue D, Zhu C, Liu X (2019) Microstructure and electrical properties of polyimide-based composites reinforced by high aspect-ratio titanium oxide nanowires. Surf Coatings Technol 361:425–431

    CAS  Google Scholar 

  84. Kong YN, Yin JH, Wenlu T, Liu XX, Song MX, Lei QQ (2014) Preparation and corona resistance of polyimide/TiO2 nanocomposites films. J Inorg Mater 29:98–102

    CAS  Google Scholar 

  85. Olariu MA, Hamciuc C, Okrasa L, Hamciuc E, Dimitrov L, Kalvachev Y (2017) Electrical properties of polyimide composite films containing TiO2 nanotubes. Polym Compos 38:2584–2593

    CAS  Google Scholar 

  86. Zha JW, Fan BH, Dang ZM, Li ST, Chen G (2010) Microstructure and electrical properties in three-component (Al2O3–TiO2)/polyimide nanocomposite films. J Mater Res 25(12):2384–2391

    CAS  Google Scholar 

  87. Lin J, Liu Y, Yang W, Lin H (2014) Preparation and study on the electric properties of PI-Al2O3 /PI-TiO2/PI-Al2O3 three layers nanocomposite films. Adv Mater Res 1015:244–249

    Google Scholar 

  88. Batsanov SS, Galko VI, Papugin KV (2010) Dielectric permittivity and electrical conductivity of polycrystalline materials. Inorg Mater 46(12):1365–1368

    CAS  Google Scholar 

  89. Li HY, Liu G, Liu B, Chen W, Chen ST (2007) Dielectric properties of polyimide/Al2O3 hybrids synthesized by in-situ polymerization. Mater Lett 61(7):1507–1511

    CAS  Google Scholar 

  90. Singha S, Thomas MJ, Kulkarni A (2010) Complex permittivity characteristics of epoxy nanocomposites at low frequencies. Ieee Trans Dielect Electri Insul 17:1249–1258

    CAS  Google Scholar 

  91. Roy M, Nelson JK, MacCrone RK, Schadler LS (2007) Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. J Mater Sci 42:3789–3799

    CAS  Google Scholar 

  92. Kozako M, Fuse N, Ohki Y, Okamoto T, Tanaka T (2004) Surface degradation of polyamide nanocomposites caused by partial discharges using IEC (b) electrodes. IEEE Trans Dielect Electr Insul 11:833–839

    CAS  Google Scholar 

  93. Lizhu L, Bing L, Wei W, Qingquani L (2006) Preparation of polyimide/inorganic nanoparticle hybrid films by sol–gel method. J Comp Mater 40(23):2175–2183

    Google Scholar 

  94. Liu L, Shi H, Weng L, Ding J, Cui W (2014) The effects of particle size on the morphology and properties of polyimide/nano-Al2O3 composite films. Polym Polym Compos 22(2):117–122

    CAS  Google Scholar 

  95. Li J, Yin J, Liu X, Feng Y, Liu Y, Zhao H, Li Y, Zhu C (2018) Effect of structure on electric properties of polyimide/Al2O3 composites investigated by SAXS. In: Abstracts of 12th IEEE international conference on the properties and applications of dielectric materials, Xi'an, China, pp 960–965

  96. Lewis TJ (2004) Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans Dielect Electr Insul 11:739–753

    CAS  Google Scholar 

  97. Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R, Zenger W (2005) Polymer nanocomposite dielectrics - the role of the interface. IEEE Trans Dielect Electr Insul 12:629–643

    CAS  Google Scholar 

  98. Cui X, Zhu G, Liu W (2016) Effect of alumina on the structure and properties of polyimide matrix films. Plastics Rubber and Compos 45(7):1–6

    Google Scholar 

  99. Zivar G, Davoud A, Saman MN, Amir HG, Yaghoub R (2012) Surface modified Al2O3 in fluorinated polyimide/Al2O3 nanocomposites: synthesis and characterization. Bull Mater Sci 35(6):925–931

    Google Scholar 

  100. Yang Y, Jinliang H, Guangning W, Jun H (2015) Thermal stabilization effect of Al2O3 nano-dopants improves the high-temperature dielectric performance of polyimide. Sci Rep 5:16986

    PubMed  PubMed Central  Google Scholar 

  101. Luo Y, Wu G, Liu J, Peng J, Zhu G, Gao G (2014) Investigation of temperature effects on voltage endurance for polyimide/Al2O3 nanodielectrics. IEEE Trans Dielectr Electri Insul 21(4):1824–1834

    CAS  Google Scholar 

  102. Shi H, Liu L, Weng L, Cui W, Zhu X (2016) preparation and characterization of polyimide/Al2O3 nanocomposite film with good corona resistance. Polym Compos 37:763–770

    CAS  Google Scholar 

  103. Ma X, Liu L, He H, Weng L (2018) Effects of interface bonding on the corona resistance of the polyimide/nano-Al2O3 three-layer composite films. High Perform Polym 30(10):1240–1246

    CAS  Google Scholar 

  104. Othman RN, Wilkinson AN (2019) Carbon nanotube hybrid and their polymer nanocomposites. In: Synthesis, technology and applications of carbon nanomaterials. Elsevier, pp 29–60. https://doi.org/10.1016/b978-0-12-815757-2.00002-4

  105. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf 41(10):1345–1367

    Google Scholar 

  106. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube polymer composites. Carbon 44(9):1624–1652

    CAS  Google Scholar 

  107. Yang N, Xu C, Hou J, Yao Y, Zhang Q, Grami ME, He L, Wang N, Qu X (2016) Preparation and properties of thermally conductive polyimide/boron nitride composites. RSC Adv 6:18279–18287

    CAS  Google Scholar 

  108. Oktay B, Türker S, Sevim K, Kayaman-Apohan N (2018) Multi-walled carbon nanotube reinforced polyimide composites. JOTCSA 5(1):283–294

    Google Scholar 

  109. Shen X, Kim J-K (2020) 3D graphene and boron nitride structures for nanocomposites with tailored thermal conductivities: recent advances and perspectives. Funct Compos Struct 2(2):022001

    CAS  Google Scholar 

  110. Gu J, Lv Z, Wu Y, Guo Y, Tian L, Qiu H, Li W, Zhang Q (2017) Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization electrospinning-hot press method. Compos Part A 94:209–216

    CAS  Google Scholar 

  111. Tsai M-H, Tseng I-H, Chiang J-C, Li J-J (2014) Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability. ACS Appl Mater Interfaces 6:8639–8645

    CAS  PubMed  Google Scholar 

  112. Liu P, Yao Z, Zhou J (2016) Mechanical, thermal and dielectric properties of graphene oxide/polyimide resin composite. High Perform Polym 28(9):1033–1042

    CAS  Google Scholar 

  113. Mohamed GM, Shiao WK (2019) Functional polyimide/polyhedral oligomeric silsesquioxane nanocomposites. Polymers 11(1):26. https://doi.org/10.3390/polym11010026

    Article  CAS  Google Scholar 

  114. Wozniak AI, Ivanov VS, Kosova OV, Yegorov AS (2016) Thermal properties of polyimide composites with nanostructured silicon carbide. Orient J Chem 32(6):2967–2974

    CAS  Google Scholar 

  115. Wu Y-W, Zhang W-C, Yang R-J (2018) Ultralight and low thermal conductivity polyimide–polyhedral oligomeric silsesquioxanes aerogels. Macromol Mater Eng 303:1700403

    Google Scholar 

  116. Łukawski D, Dudkowiak A, Janczak D, Lekawa-Raus A (2019) Preparation and applications of electrically conductive wood layered composites. Compos Part A. https://doi.org/10.1016/j.compositesa.2019.105656

    Article  Google Scholar 

  117. Ma P, Dai C, Wang H, Li Z, Liu H, Li W, Yang C (2019) A review on high temperature resistant polyimide films: heterocyclic structures and nanocomposites. Compos Commun 16:84–93

    Google Scholar 

  118. Li Y, Pan D, Chen S, Wang Q, Pan G, Wang T (2013) In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater Des 47:850–856

    CAS  Google Scholar 

  119. Kim Y, Chang JH (2012) Colorless and transparent polyimide nanocomposites: thermo-optical properties, morphology, and gas permeation. Macromol Res 21:228–233

    Google Scholar 

  120. Advani SG, Hsaio KT (2012) Manufacturing techniques for polymer composites (PMCs). Woodhead publishing limited, UK

    Google Scholar 

  121. Nair PP, George KE, Jayakrishnan N (2015) Studies on mechanical behavior high impact polystyrene/vinyl clay nanocomposites: comparison between in situ polymerization and melt mixing. Polym Compos 00:000–000

    Google Scholar 

  122. Tanaka A, Umeda K, Yudasaka M, Suzuki M, Ohana T, Yumura M, Iijima S (2005) Friction and wear of carbon nanohorn-containing polyimide composites. Tribol Lett 19(2):35–142

    Google Scholar 

  123. Schwertz M, Sebastien L, Elodie B, Adele C, Marie-France V, Michel N (2014) Consolidation by spark plasma sintering of polyimide and polyetheretherketone. J Appl Polym Sci 131:40783

    Google Scholar 

  124. Matizamhuka WR (2016) Spark Plasma Sintering (SPS) – An advanced sintering technique for structural nanocomposite materials. J South Afr Inst Min Metall 116:1171–1180

    CAS  Google Scholar 

  125. Wallenberg FT, Machesney JB, Naslain R, Ackler HD (2011) Advanced inorganic fibers: processes-structure-properties application. Springer Science and Business Media, Germany

    Google Scholar 

  126. Xie J, Yin P, Shi W, Hu M, Wang J, Zhou X, Han J, Cao S, Han L, Yao Y (2016) Corrosion mechanism of E-glass of chemical resistance glass fiber in acid environment. J Wuhan Univ Technol Mater Sci 31:872–876

    CAS  Google Scholar 

  127. Tokita M (1999) Trends in advanced SPS systems and FGM technology. In: Proceedings of the NEDO international symposium on functionally graded materials, Tokyo, Japan, pp 23–33

  128. Zhao H, Yang C, Li N, Yin J, Feng Y, Liu Y, Li J, Li Y, Yue D, Zhua C, Liu X (2019) Electrical and mechanical properties of polyimide composite films reinforced by ultralong titanate nanotubes. Surf Coat Technol 360:13–19

    CAS  Google Scholar 

  129. Fazil S, Bangesh M, Rehman W, Liaqat K, Saeed S, Sajid M, Waseem M, Shakeel M, Bibi I, Guo C-Y (2019) Mechanical, thermal, and dielectric properties of functionalized graphene oxide/polyimide nanocomposite films. Nanomater Nanotechnol 9:1–8

    Google Scholar 

  130. Sun D, Yin J, LiuY LX (2016) Electrical and thermal properties of polyimide/boron nitride nanocomposite films. J Polym Res 23:254

    Google Scholar 

  131. Dai W, Yu J, Liu Z, Yi W, Song Y, Lyu J, Bai H, Nishimura K, Jiang N (2015) Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers. Compos Part A 76:73–81

    CAS  Google Scholar 

  132. Lu H-F, Yin J-H, Ji T-Y, Liu X-X, Feng Y, Liu Y-Y, Zhao H (2018) Interfacial characteristics and dielectric properties of polyimide/Ag nanosheet composites. Mater let 222:12–15

    CAS  Google Scholar 

  133. Li R, Lv X, Yu J, Wang X, Huang P (2020) Heat-resistant polyimide composite film filled with silver nanoparticle-modified hexagonal boron nitride. High Perform Polym. https://doi.org/10.1177/0954008320938846

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Centre for Energy and Electric Power (CEEP) and Tshwane University of Technology (TUT) South Africa for their financial support in the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Ogbonna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogbonna, V.E., Popoola, A.P.I., Popoola, O.M. et al. A review on polyimide reinforced nanocomposites for mechanical, thermal, and electrical insulation application: challenges and recommendations for future improvement. Polym. Bull. 79, 663–695 (2022). https://doi.org/10.1007/s00289-020-03487-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03487-8

Keywords

Navigation