Skip to main content

Composition-property relationship of polyurethane networks based on polycaprolactone diol

Abstract

This work was focused on the synthesis of polyurethane networks (PUNs) based on polycaprolactone (PCL) as soft segment (SS) and Boltorn® aliphatic hyperbranched polyester of the second pseudo generation and 4,4′-diphenylmethane diisocyanate (MDI) as the parts of the hard segments (HS), by a two-step solution polymerization. In order to find the best ratio between HS and SS to achieve good thermal and mechanical properties, suitable hydrophobicity and morphology of the PUNs, various experimental analyses were conducted. The obtained results revealed that features of the PUNs highly depend on the PCL content. The increase in the PCL content leads to the increase in thermal stability, hydrophobicity and appearance of the microphase separation, but on the other side, it also leads to the decrease in storage modulus in the rubbery plateau, crosslinking density and glass transition temperatures of PUNs. This work shows that features of PUNs can be easily adjusted for a specific application by careful selection of the SS and HS ratio.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Fenfen W, Shengli C, Qiang W, Rongchun Z, Pingchuan S (2019) Strain-induced structural and dynamic changes in segmented polyurethane elastomers. Polymer 163:154–161

    Google Scholar 

  2. Špírková M, Poręba R, Pavličević J, Kobera L, Baldrian J, Pekárek M (2012) Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. I. The influence of hard-segment content and macrodiol-constitution on bottom-up self-assembly. J Appl Polym Sci 126:1016–1030

    Google Scholar 

  3. Yildirim E, Yurtsever M, Wilkes GL, Yilgör I (2016) Effect of intersegmental interactions on the morphology of segmented polyurethanes with mixed soft segments: a coarse-grained simulation study. Polymer 90:204–214

    CAS  Google Scholar 

  4. Maji PK, Bhowmick AK (2009) Influence of number of functional groups of hyperbranched polyol on cure kinetics and physical properties of polyurethanes. J Polym Sci Part A Polym Chem 47:731–745

    CAS  Google Scholar 

  5. Cao Q, Liu P (2006) Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage. Eur Polym J 42:2931–2939

    CAS  Google Scholar 

  6. Okrasa L, Czech P, Boiteux G, Méchin F, Ulanski J (2007) Studies of molecular dynamics in polyurethane networks with hyperbranched polyester Boltorn®H30 as a crosslinker. J Non-Cryst Solids 353:4293–4297

    CAS  Google Scholar 

  7. Zajac M, Kahl H, Schade B, Rödel T, Dionisio M, Beiner M (2017) Relaxation behavior of polyurethane networks with different composition and crosslinking density. Polymer 111:83–90

    CAS  Google Scholar 

  8. Barszczewska-Rybarek I (2017) The role of molecular structure on impact resistance and bending strength of photocured urethanedimethacrylate polymer networks. Polym Bull 74:4023–4040

    CAS  Google Scholar 

  9. Pusztai E, Cs K, Nagy J, Wagner Ö (2013) The effect of some disiloxane chain extenders on the thermal and mechanical properties of cross-linked poly(siloxane-urethane)s. Express Polym Lett 7:456–470

    CAS  Google Scholar 

  10. Irfan M, Seiler M (2010) Encapsulation using hyperbranched polymers: From research and technologies to emerging applications. Ind Eng Chem Res 49:1169–1196

    CAS  Google Scholar 

  11. Fréchet JMJ, Hawker CJ (1995) Hyperbranched polyphenylene and hyperbranched polyesters: new soluble, three-dimensional, reactive polymers. React Func Polym 26:127–136

    Google Scholar 

  12. Bhat SI, Ahmadi Y, Ahmad S (2018) Recent advances in structural modifications of hyperbranched polymers and their applications. Ind Eng Chem Res 57:10754–10785

    CAS  Google Scholar 

  13. Kumari S, Mishra AK, Chattopadhyay DK, Raju KVSN (2007) Synthesis and characterization of hyperbranched polyesters and polyurethane coatings. J Polym Sci Part A Polym Chem 45:2673–2688

    CAS  Google Scholar 

  14. Poh AK, Sin LC, Foon CS, Hock CC (2014) Polyurethane wood adhesive from palm oil-based polyester polyol. J Adhes Sci Technol 28:1020–1033

    CAS  Google Scholar 

  15. Zhou J, Li H, Lu X (2018) Damping elastomer with broad temperature range based on irregular networks containing hyperbranched polyester and dangling chains. Polym Adv Technol 29:2308–2316

    CAS  Google Scholar 

  16. Manjula Dhevi D, Jaisankar SN, Pathak M (2013) Effect of new hyperbranched polyester of varying generations on toughening of epoxy resin through interpenetrating polymer networks using urethane linkages. Eur Polym J 49:3561–3572

    CAS  Google Scholar 

  17. Somisetti V, Allauddin S, Narayan R, Raju KVSN (2015) Synthesis of a novel glycerol based B3-type monomer and its application in hyperbranched polyester urethane–urea coatings. RSC Adv 5:74003–74011

    CAS  Google Scholar 

  18. Chan-Chan LH, Solis-Correa R, Vargas-Coronado RF, Cervantes-Uc JM, Cauich-Rodríguez JV, Quintana P, Bartolo-Pérez P (2010) Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomater 6:2035–2044

    CAS  PubMed  Google Scholar 

  19. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    CAS  Google Scholar 

  20. Kupka V, Vojtova L, Fohlerova Z, Jancar J (2016) Solvent free synthesis and structural evaluation of polyurethane films based on poly(ethylene glycol) and poly(caprolactone). Express Polym Lett 10:479–492

    CAS  Google Scholar 

  21. Oh JM, Lee SH, Son JS, Khang G, Kim CH, Chun HJ, Min BH, Kim JH, Kim MS (2009) Ring-opening polymerization of ε–caprolactone by poly(propyleneglcol) in the presence of monomer activator. Polymer 50:6019–6023

    CAS  Google Scholar 

  22. Zhao J, Xu R, Luo G, Wu J, Xia H (2016) Self-healing poly(siloxane-urethane) elastomers with remoldability, shape memory and biocompatibility. Polym Chem 7:7278–7286

    CAS  Google Scholar 

  23. Fukushima K, Feijoo JL, Yang M-C (2013) Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend. Eur Polym J 49:706–717

    CAS  Google Scholar 

  24. Gumede TP, Luyt AS, Müller AJ (2018) Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes. Express Polym Lett 12:505–529

    CAS  Google Scholar 

  25. Yuan S, Jiang S, Luo Y (2020) Cross-linking network structures and mechanical properties of novel HTPE/PCL binder for solid propellant. Polym Bull. https://doi.org/10.1007/s00289-020-03110-w

    Article  Google Scholar 

  26. Unal S, Ozturk G, Sisson K, Long TE (2008) Poly(caprolactone) containing highly branched segmented poly(ester urethane)s via A2 with oligomeric B3 polymerization. J Polym Sci Part A Polym Chem 46:6285–6295

    CAS  Google Scholar 

  27. Džunuzović JV, Stefanović IS, Džunuzović ES, Dapčević A, Šešlija SI, Balanč BD, Lama GC (2019) Polyurethane networks based on polycaprolactone and hyperbranched polyester: structural, thermal and mechanical investigation. Prog Org Coat 13:105305

    Google Scholar 

  28. Vuković J (2006) Synthesis and characterization of aliphatic hyperbranched polyesters. PhD Dissertation, University of Osnabrück

  29. Marand Å, Dahlin J, Karlsson D, Skarping G, Dalene M (2004) Determination of technical grade isocyanates used in the production of polyurethane plastics. J Environ Monit 6:606–614

    CAS  PubMed  Google Scholar 

  30. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks II. Swelling J Chem Phys 11:521–526

    CAS  Google Scholar 

  31. Brandrup J, Immergut EH (1989) Polymer Handbook, 3rd edn. John Wiley, New York

    Google Scholar 

  32. Hill LW (1997) Calculation of crosslink density in short chain networks. Prog Org Coat 31:235–243

    CAS  Google Scholar 

  33. Patil PN, Rath SK, Sharma SK, Sudarshan K, Maheshwari P, Patri M, Praveen S, Khandelwal P, Pujari PK (2013) Free volumes and structural relaxations in diglycidyl ether of bisphenol-A based epoxy–polyether amine networks. Soft Matter 9:3589–3599

    CAS  Google Scholar 

  34. Petrovic ZS, Ferguson J (1991) Polyurethane elastomers. J. Prog Polym Sci 16:695–836

    CAS  Google Scholar 

  35. Amrollahi M, Sadeghi GMM (2008) Evaluation of adhesion strength, flammability, and degradation of HBCD-containing polyurethane adhesives. J Appl Polym Sci 110:3538–3543

    CAS  Google Scholar 

  36. Bittiger H, Marchessault RH, Niegisch WD (1970) Crystal structure of poly-ε-caprolactone. Acta Crystallogr B 26:1923–1927

    CAS  Google Scholar 

  37. Woo HJ, Majid SR, Arof AK (2013) Effect of ethylene carbonate on proton conducting polymer electrolyte based on poly(ε-caprolactone) (PCL). Solid State Ion 252:102–108

    CAS  Google Scholar 

  38. Zhang J, Hu CP (2008) Synthesis, characterization and mechanical properties of polyester-based aliphatic polyurethane elastomers containing hyperbranched polyester segments. Eur Polym J 44:3708–3714

    CAS  Google Scholar 

  39. Džunuzović JV, Pergal MV, Poręba R, Vodnik VV, Simonović BR, Špírková M, Jovanović S (2012) Analysis of dynamic mechanical, thermal and surface properties of poly(urethane-ester-siloxane) networks based on hyperbranched polyester. J Non-Cryst Solids 358:3161–3169

    Google Scholar 

  40. Dash TK, Konkimalla VB (2012) Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release 158:15–33

    CAS  PubMed  Google Scholar 

  41. Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE (2011) Functional aliphatic polyesters for biomedical and pharmaceutical applications. J Control Release 152:168–176

    CAS  PubMed  Google Scholar 

  42. Gong CY, Fu SZ, Gu YC, Liu CB, Kan B, Deng HX, Luo F, Qian ZY (2009) Synthesis, characterization, and hydrolytic degradation of biodegradable poly(ether ester)-urethane copolymers based on e-caprolactone and poly(ethylene glycol). J Appl Polym Sci 113:1111–1119

    CAS  Google Scholar 

  43. Shamsi R, Sadeghi GMM (2016) Novel polyester diol obtained from PET waste and its application in the synthesis of polyurethane and carbon nanotube-based composites: swelling behavior and characteristic properties. RSC Adv 6:38399–38415

    CAS  Google Scholar 

  44. Schott H (1992) Swelling kinetics of polymers. J Pharm Sci 81(5):467–470

    CAS  PubMed  Google Scholar 

  45. Emamikia M, Barikani M, Bakhshandeh G (2015) Relationship between structure and aromatic solvent permeability of crosslinked polyurethanes based on hyperbranched polyesters. Polym Int 64:1142–1154

    CAS  Google Scholar 

  46. Ritger PL, Peppas NA (1987) A simple equation for description of solute release. II Fickian and anomalous release from swellable devices. J Control Release 5:37–42

    CAS  Google Scholar 

  47. Alfrey TJ, Gurnee EF, Lloyd WG (1966) Diffusion in glassy polymers. J Polym Sci C 12:249–261

    Google Scholar 

  48. Fieldson GT, Barbari TA (1993) (1993) The use of FTi r-a t r spectroscopy to characterize penetrant diffusion in polymers. Polymer 34:1146–1153

    CAS  Google Scholar 

  49. Sarkar S, Adhikari B (2001) Synthesis and characterization of lignin-HTPB copolyurethane. Eur Polym J 37:1390–1401

    Google Scholar 

  50. Asif A, Shi W, Shen X, Nie K (2005) Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched aliphatic polyester of varying generation number. Polymer 46:11066–11078

    CAS  Google Scholar 

  51. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133

    CAS  Google Scholar 

  52. Zhang Y, Liao J, Fang XC, Bai F, Qiao K, Wang L (2017) Renewable highperformance polyurethane bioplastics derived from lignin-poly(epsilon-caprolactone). ACS Sustain Chem Eng 5:4276–4284

    CAS  Google Scholar 

  53. Cakić SM, Ristić IS, Krakovský I, Stojiljković DT, Bĕlský P, Kollová L (2014) Crystallization and thermal properties in waterborne polyurethane elastomers: Influence of mixed soft segment block. Mater Chem Phys 144:31–40

    Google Scholar 

  54. Kong X, Liu G, Curtis JM (2012) Novel polyurethane produced from canola oil based poly(ether ester) polyols: synthesis, characterization and properties. Eur Polym J 48:2097–2106

    CAS  Google Scholar 

  55. Wietor J-L, van Beek DJM, Peters GW, Mendes E, Sijbesma RP (2011) Effects of branching and crystallization on rheology of polycaprolactone supramolecular polymers with ureidopyrimidinone end groups. Macromolecules 44:1211–1219

    CAS  Google Scholar 

  56. Asif A, Huang CY, Shi WF (2005) Photopolymerization of waterborne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester and properties of the cured films. Colloid Polym Sci 283:721–730

    CAS  Google Scholar 

  57. Xu Y, Chen D (2018) Shape memory-assisted self-healing polyurethane inspired by a suture technique. J Mater Sci 53:10582–10592

    CAS  Google Scholar 

  58. Stefanović IS, Dostanić J, Lončarević D, Vasiljević-Radović D, Ostojić S, Marković S, Pergal MV (2019) Preparation and characterization of poly(urethane-siloxane)/titanium-dioxide nanocomposites. Hem Ind 73:13–24

    Google Scholar 

  59. Fu S, Zhu J, Chen S (2018) Tunable shape memory polyurethane networks cross-linked by 1,3,5,7-tetrahydroxyadamantane. Macromol Res 26:1035–1041

    CAS  Google Scholar 

  60. Hazmi ASA, Pauzi NNPN, Maurad ZA, Abdullah LC, Aung MM, Ahmad A, Salleh MZ, Tajau R, Mahmood MH, Saniman SE (2017) Understanding intrinsic plasticizer in vegetable oil-based polyurethane elastomer as enhanced biomaterial. J Therm Anal Calorim 130:919–933

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 451-03-68/2020-14/200026). This research was financially supported in part by the Ministry of Education, Science and Technological Development of the Republic of Serbia through the former research projects: 172062 and III45007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan S. Stefanović.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stefanović, I.S., Džunuzović, J.V., Džunuzović, E.S. et al. Composition-property relationship of polyurethane networks based on polycaprolactone diol. Polym. Bull. 78, 7103–7128 (2021). https://doi.org/10.1007/s00289-020-03473-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03473-0

Keywords

  • Polyurethane networks
  • Polycaprolactone
  • Hyperbranched polyesters
  • Thermal properties
  • Mechanical properties
  • Morphology