Skip to main content
Log in

A study on fracture toughness of nano-structured carbon black-filled epoxy composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Carbon black (CB)-filled epoxy nanocomposites were produced by mixing the desired amount of nano-structured CB (CBNFs) from biomass waste (i.e., bagasse, bamboo, and oil palm shell) with the epoxy resin. The fracture toughness characteristics of epoxy nanocomposites with 1%, 3%, 5%, and 10% (based on wt.% of epoxy) filler loading were observed using the Vickers hardness test, and the surface morphology was analyzed using transmission electron microscopy and scanning electron microscope. The results showed a decrease in fracture toughness, mainly due to cracked bridging of CB nanograins formed onto the epoxy matrix. The size of the cleavage plane decreased after the infusion of the CBNFs. It implied that the path of the crack tip was distorted because of the CBNFs, making crack propagation more difficult. The physical and mechanical properties increased when the epoxy composites containing 1% to 5% CBNFs although it was decreased at 10% CBNFs filler loading. One key finding was the morphological interaction between the CNBFs and epoxy matrix shows that various types of fracture toughness were identified, such as voids, crack propagation paths, bridging effect, and branching effects of cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stavropoulos SG, Sanida A, Psarras G (2020) A comparative study on the electrical properties of different forms of carbon allotropes-epoxy nanocomposites. EXPRESS Polym Lett 6:283–292

    Google Scholar 

  2. Mydul Islam AKM, Hwang J, Lee S, Kim J (2016) Comparative study of carbon black and activated carbon adsorbents for removal of carbofuran from aqueous solution. J Desalin Water Treat 57(45):21512–21523

    CAS  Google Scholar 

  3. Xie H, Yang Q, Sun X, Yang J, Huang Y (2006) Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration. Sensor Actuat B-Chem 113(2):887–891

    CAS  Google Scholar 

  4. Islam I, Sultana S, Ray SK, Nur HP, Hossain T, Ajmotgir W (2018) Electrical and tensile properties of carbon black reinforced polyvinyl chloride conductive composites. J Carbon Res 4(15):1–12

    Google Scholar 

  5. Atif M, Bongiovanni M, Giorcelli E, Tagliaferro CA (2013) Modification and characterization of carbon black with mercaptopropyltrimethoxysila. Appl Sur Sci 286:142–148

    CAS  Google Scholar 

  6. Soares MCF, Viana MV, Schaefer ZL, Gangoli VS, Cheng Y, Caliman V, Wong MS, Silva GG (2014) Surface modification of carbon black nanoparticles by dodecylamine: thermal stability and phase transfer in brine medium. Carbon 72:287–295

    CAS  Google Scholar 

  7. Lee S, Eum CH, Kim WJ (2016) Surface modification of carbon black using polymer resin synthesized by a phenyl radical reaction. J Korean Chem Soc 60(4):286–291

    CAS  Google Scholar 

  8. Wang L, Wang X, Zou B, Ma X, Qu Y, Rong C, Li Y, Sun Y, Wang Z (2011) Preparation of carbon black from rice husk by hydrolysis, carbonization and pyrolysis. Biores Technol 102(17):8220–8224

    CAS  Google Scholar 

  9. Pal T, Vikstrom T, Molinder R, Wiinikka H (2018) Structure of carbon black continuously produced from biomass pyrolysis oil. Green Chem 20(17):3981–3992

    Google Scholar 

  10. LeeH’ngParidahChinKhooNazrinAsyikinMaminsk CLPSTKLPSRARSNM (2017) Effect of reaction time and temperature on the properties of carbon black made from palm kernel and coconut shell. Asian J Sci Res 10(1):24–33

    Google Scholar 

  11. Abdul Khalil HPS, Firoozian P, Bakare IO, Akil H, Noor A (2010) Exploring biomass based carbon black as filler in epoxy composites: flexural and thermal properties. Mater Des 31(7):3419–3425

    CAS  Google Scholar 

  12. Zhang Z, Zhao H, Gu W, Yang L, Zhang B (2019) A biomass derived porous carbon for broadband and lightweight microwave absorption. Sci Rep 9:18617–18626

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ronsse F, van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5(2):104–115

    CAS  Google Scholar 

  14. Rehrah D, Reddy MR, Novak JM, Bansode RR, Schimmel KA, Yu J, Watts DWJ, Ahmedna M (2014) Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J Anal Appl Pyrol 108:301–303

    CAS  Google Scholar 

  15. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohyd Polym 86:1–18

    CAS  Google Scholar 

  16. Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368

    CAS  Google Scholar 

  17. Vinod Kumar T, Chandrasekaran M, Mohanraj P, Balasubramanian R, Muraliraja R, Shaisundaram VS (2018) Fillers preparation for polymer composite and its properties-a review. Inter J Eng Technol 7:212–217

    Google Scholar 

  18. Karademir A, Chew YS, Hoyland RW, Xiao H (2008) Influence of fillers on sizing efficiency and hydrolysis of alkyl ketene dimer. Can J Chem Eng 83:603–606

    Google Scholar 

  19. Hong JP, Yoo SW, Hwang T, Oh JK, Hong SC, Lee Y, Nam JD, Bhuiya MH, Kim KJ (2012) High-performance heat-sink composites incorporating micron-sized inorganic fillers and Sn/In metal particles. Polym Eng Sci 52(11):2435–2442

    CAS  Google Scholar 

  20. Kausar A (2017) Contemporary applications of carbon black-filled polymer composites: an overview of essential aspects. J Plast Film Sheet 34(3):256–299

    Google Scholar 

  21. Ojha S, Acharya SK, Raghavendra G (2015) Mechanical properties of natural carbon black reinforced polymer composites. J Appl Polym 132(1):41211–41220

    Google Scholar 

  22. Farida E, Bukit N, Ginting EM, Bukit BF (2019) The effect of carbon black composition in natural rubber compound. Case Stud in Therm Eng 16:1–6

    Google Scholar 

  23. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preperation, properties and uses of a new class of materials. Mater Sci Eng: R: Reports 28:1–63

    Google Scholar 

  24. He XJ, Geng YJ, Oke S, Higashi K, Yamamoto M, Takikawa H (2009) Electrochemical performance of RuOx/activated carbon black composite for supercapacitors. Synth Met 159:7–12

    CAS  Google Scholar 

  25. Kim BC, Park SW, Lee DG (2008) Fracture toughness of the nano-particle reinforced epoxy composite. Compos Struct 86(1–3):69–77

    Google Scholar 

  26. Zheng N, Huang Y, Liu HY, Gao J, Mai YW (2017) Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves. Compos Sci Technol 140:8–15

    CAS  Google Scholar 

  27. Mohd Hasan MH, Bachmann RT, Loh SK, Manroshan S, Ong SK (2019) Effect of pyrolysis temperature and time on properties of palm kernel shell-based biochar. OP Conf Series: materials Science and Engineering 548:012020

    Google Scholar 

  28. Li ZH, Zhang J, Chen SJ (2008) Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber. EXPRESS Polym Lett 2(10):695–704

    CAS  Google Scholar 

  29. Kuzhir P, Paddubskaya A, Plyushch A, Volynets N, Maksimenko S, Macutkevic J, Kranauskaite I, Banys J, Ivanov E, Kotsilkova R, Celzard A (2013) Epoxy composites filled with high surface area-carbon fillers: optimization of electromagnetic shielding, electrical, mechanical, and thermal properties. J App Phys 114(16):164304

    Google Scholar 

  30. He Y, Zhang GL (2009) Historical record of black carbon in urban soils and its environmental implications. Environ Pollut 157:2684–2688

    CAS  PubMed  Google Scholar 

  31. Abdul Khalil HPS, Jawaid M, Firoozian P, Zainudi ES, Parida MT (2013) Dynamic mechanical properties of activated carbon-filled epoxy nanocomposite. Int J Poly Anal and Charact 18(4):247–256

    CAS  Google Scholar 

  32. Li W, Yang K, Peng J, Zhang L, Guo S, Xia H (2008) Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbon derived from carbonized coconut shell chars. Ind Crops Prod 28:190–198

    CAS  Google Scholar 

  33. Swami PN, Raju BN, Rao DV, Rao JB (2009) Synthesis and Characterization of Nano-Structured Fly Ash: a Waste from Thermal Power Plant. Proceedings of the Institution of Mechanical Engineers, Part N: J Nanoeng Nanosystems 223:35–44

    Google Scholar 

  34. Niihara K, Morena R, Hasselman DPH (1982) Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. J Mat Sci Letters 1(1):13–16

    CAS  Google Scholar 

  35. Zhang S, Cao XY, Mai YM, Ke YC, Zhang JK, Wang FS (2011) The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. EXPRESS Polym Lett 5(7):581–590

    CAS  Google Scholar 

  36. Ruiz V, Blanco C, Granda M, Menendez R, Santamaria R (2007) Influence of electrode preparation on the electrochemical behaviour of carbon-based supercapasitors. J Appl Electrochem 37:717–721

    CAS  Google Scholar 

  37. Fang W, Fei SH, Wen-Bin F (2009) Preparation and microstructure of nanocomposite Mg-3ni-2mno2 alloy by HDDR combined with ball milling. In: Shahjahan M, Mohammad YA, Afzeri. eds, The International Conference on Advances in Material and Processing Technologies (AMPT 2009). Kuala Lumpur malaysia. Advanced Material, 77

  38. Paul KT, Satphaty SK, Manna L, Chakraborty KK, Nando GB (2007) Preparation and characterization of nano structured materials from fly ash: a waste from thermal power stations, by high energy ball milling. Nanoscale Res Lett 2(8):397–404

    CAS  PubMed Central  Google Scholar 

  39. Qi C, Chasiotis I (2008) Effect of Silica Inclusions on the Properties of Polymer Nanocomposites. In: Aerospace Engineerin Proceedings of the XIth International Congress and Exposition. Orlando, Florida USA

  40. Fua SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B 39:933–961

    Google Scholar 

  41. Mailabari RJ, Mamat O, Baig Z (2016) Dispersion of carbon black in epoxy resin and the electrical property of the nanocomposite. ARPN J Eng Appl Sci 11(20):12176–12180

    CAS  Google Scholar 

  42. Jacques NM, Rought PRE, Fritsch D, Savage M, Godfrey HGW, Li L, Mitra T, Frogley MD, Cinque G, Yang S, Schroder M (2018) Locating the binding domains in a highly selectivemixed matrix membrane via synchrotron IR microspectroscopy. Chem Commun 54:2866–2869

    CAS  Google Scholar 

  43. Daramola OO, Akintayo OS (2017) Mechanical properties of epoxy matrix composites reinforced with green silica particles. Int J Eng 4:167–174

    Google Scholar 

  44. Khan K, Amin M, Ali M, Iqbal M, Yasin M (2017) Effect of micro/nano-SiO2on mechanical, thermal, and electrical properties of silicone rubber, epoxy, and EPDM composites for outdoor electrical insulations. Turk J Elec Eng Comp Sci 25:1426–1435

    Google Scholar 

  45. Sipaut CS, Ahmad N, Adnan R, Ab RI, Bakar MA, Ismail J, Chee CK (2007) Properties and morphology of bulk epoxy composites filled with modified fumed silica-epoxy nanocomposites. J Appl Sci 7:27–34

    CAS  Google Scholar 

  46. Salasinska K, Barczewski M, Gorny R, Klozinski A (2018) Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polym Bull 75:2511–2528

    CAS  Google Scholar 

  47. Lim KS, Mariatti M, KamarolGhaniHalim MABAHSAA, Bakar (2018) Properties of nanofillers/crosslinked polyethylene composites for cable insulation. J Vinyl Addit Techn 25(S1):E147–E154

    Google Scholar 

  48. Zare Y (2016) Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos Pt A Appl Sci Manuf 84:158–164

    CAS  Google Scholar 

  49. Li S, Lin MM, Toprak MS, Kim DK, Muhammed M (2010) Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev 1:5214–5232

    Google Scholar 

  50. Rashid ESA, Ariffin K, Kooi CC, Akil HM (2009) Preparation and properties of POSS/epoxy composites for electronic packaging applications. Mater Des 30:1–8

    Google Scholar 

  51. Meincke O, Kaempfer D, Weickmann H, Freidrick C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45:739–748

    CAS  Google Scholar 

  52. Libonati F, Vellwock AE, Ielmini F, Abliz D, Ziegmann G, Vergani L (2019) Bone-inspired enhanced fracture toughness of de novo fiber reinforced composites. Sci Rep 9:3142–3155

    PubMed  PubMed Central  Google Scholar 

  53. Modesti M, Lorenzetti A, Bon D, Besco S (2005) Effect of processing conditions on morphology and mechanical properties of compatibilized polypropylene nanocomposites. Polymer 46:10237–10245

    CAS  Google Scholar 

  54. Incarnato L, Scarfato P, Russo GM, Di Maio L, Lannelli P, Acierno D (2003) Preparation and characterization of new melt compounded copolyamide nanocomposites. Polymer 44:4625–4634

    CAS  Google Scholar 

  55. Wunde W, Klüppel M (2004) Effect of filler and blending with SBR and NR on thermally induced crystallization of high-cis BR as evaluated by dynamic mechanical analysis. EXPRESS Polym Lett 14(3):261–271

    Google Scholar 

  56. Guloglu GE, Altan MC (2019) Moisture absorption of carbon/epoxy nanocomposites. J Compos Sci 4:21–34

    Google Scholar 

  57. Wetzel B, Haupert F, Zhang MQ (2003) Epoxy nanocomposites with high mechanical and tribological performance. Compos Sci Technol 63:2055–2067

    CAS  Google Scholar 

  58. Zhou JF, Song YH, Zheng Q, Wu Q, Zhang MQ (2008) Percolation transition and hydrostatic piezoresistance for carbon black filled poly(methylvinylsilioxane) vulcanizates. Carbon 46:679–691

    CAS  Google Scholar 

  59. Yang K, Gu M, Guo Y, Pan X, Mu G (2009) Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 47:1723–1737

    CAS  Google Scholar 

  60. Zhou JF, Song YH, Zheng Q, Wu Q, Zhang MQ (2008) Percolation transsition and hydrostatic piezoresistance for carbon black filled poly(methylvinylsilioxane) vulcanizates. Carbon 46:679–691

    CAS  Google Scholar 

  61. Huang J (2002) Review on carbon black filled conducting polymers and polymer blends. Adv Polym Tech 21:299–313

    CAS  Google Scholar 

  62. Grunla JC, Gerberich WW, Francis LF (2001) Electrical and mechanical behavior of carbon black filled poly(vinyl acetate) latex-based composites. Polym Eng Sci 4:1947–1962

    Google Scholar 

  63. Abdul Khalil HPS, Noriman NZ, Ahmad MN, Ratnam MM, Nik Fuaad NA (2017) Polyester composites filled carbon black and activated carbon from bamboo (Gigantochloa scortechinii): physical and mechanical properties. J Reinf Plast Comp 26(3):305–320

    Google Scholar 

  64. Ferreira GF, Pierozzi M, Fingolo AC, da Silva WP, Strauss M (2019) Tuning sugarcane bagasse biochar into a potential carbon black substitute for polyethylene composites. J Polym Environ 27:1735–1745

    CAS  Google Scholar 

  65. Abdul Khalil HPS, Rus Mahayani AR, Bhat IH, Dungani R, Almulali MZ, Abdullah CK (2012) Characterization of various organic waste nanofillers obtained from oil palm ash. BioResources 9(1):5771–5780

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Research, Technology and High Education (RISTEKDIKTI), Indonesia, for providing Research Grant No. 2/E1/KP.PTNBH/2019. The authors would also like to thank the Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia for providing the necessary facilities for testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dungani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dungani, R., Sumardi, I., Alamsyah, E.M. et al. A study on fracture toughness of nano-structured carbon black-filled epoxy composites. Polym. Bull. 78, 6867–6885 (2021). https://doi.org/10.1007/s00289-020-03444-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03444-5

Keywords

Navigation